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S U M M A R Y
Frequency-dependent amplitude absorption and phase velocity dispersion are typically linked
by the causality-imposed Kramers–Kronig relations, which inevitably degrade the quality of
seismic data. Seismic attenuation compensation is an important processing approach for en-
hancing signal resolution and fidelity, which can be performed on either pre-stack or post-stack
data so as to mitigate amplitude absorption and phase dispersion effects resulting from intrin-
sic anelasticity of subsurface media. Inversion-based compensation with L1 norm constraint,
enlightened by the sparsity of the reflectivity series, enjoys better stability over traditional
inverse Q filtering. However, constrained L1 minimization serving as the convex relaxation
of the literal L0 sparsity count may not give the sparsest solution when the kernel matrix is
severely ill conditioned. Recently, non-convex metric for compressed sensing has attracted
considerable research interest. In this paper, we propose a nearly unbiased approximation
of the vector sparsity, denoted as L1−2 minimization, for exact and stable seismic attenuation
compensation. Non-convex penalty function of L1−2 norm can be decomposed into two convex
subproblems via difference of convex algorithm, each subproblem can be solved efficiently by
alternating direction method of multipliers. The superior performance of the proposed com-
pensation scheme based on L1−2 metric over conventional L1 penalty is further demonstrated
by both synthetic and field examples.

Key words: Inverse theory; Seismic attenuation; Wave propagation.

I N T RO D U C T I O N

Amplitude absorption and phase dispersion caused by intrinsic
anelasticity of subsurface media inevitably degrade the quality of
seismograms, decrease the resolution of migrated images and even-
tually affect the reliability of seismic interpretation. Such frequency-
dependent attenuating effects are typically characterized by an em-
pirical formulation wherein the wavenumber is a complex function
of frequency, whose real and imaginary parts separately signify the
phase velocity cp(ω) and attenuation coefficient α(ω). Under the
assumption of linearity and causality, Kramers–Kronig (K-K) rela-
tions impose restrictions on both attenuation and dispersion in the
frequency domain (Waters et al. 2003, 2005). Based on K-K rela-
tions, some widely used attenuation models have been established
for seismology, such as the Kolsky–Futterman model (Kolsky 1956;
Futterman 1962), the power-law model (Strick 1967; Azimi 1968;
Szabo 1994, 1995) and Kjartansson’s constant-Q model (Kjartans-
son 1979; Zhu & Carcione 2013). Alternative ways to approximate
frequency-dependent attenuation are developed on the basis of re-
laxation mechanisms (Liu et al. 1976; Carcione et al. 1988) and
their fractional generalizations derived from the conservation of

momentum and stress–strain constitutive relation (Holm &
Näsholm 2013; Wang 2015). Attenuation models mentioned above
can be further verified by laboratory measurements (Wuenschel
1965; Wang et al. 2007) and field experiments (McDonal et al.
1958; Li et al. 2016a).

Over the past three decades, great efforts have been devoted to
explore efficient and stable algorithms for enhancing the resolution
and quality of seismic data. In general, attenuation compensation
in geophysics can be roughly classified into two categories: seis-
mic record-based compensation and propagation-based compensa-
tion, each has its own merits and demerits. The former category of
compensation methods include time-varying deconvolution (Clarke
1968; Griffiths et al. 1977; Margrave et al. 2011), time-variant spec-
tral whitening (Yilmaz 2001) and inverse Q filtering (Hargreaves &
Calvert 1991; Wang 2002, 2006). These record-based compensa-
tion schemes are directly performed on attenuated seismic records
in the time or frequency domain, which exhibit higher efficiency,
greater flexibility and better simplicity. In contrast, propagation-
based compensation approaches are carried out during wave prop-
agation, which include Q-compensated one-way wave equation mi-
gration (Dai & West 1994; Mittet et al. 1995; Wang & Guo 2004b;
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Mittet 2007; Zhang et al. 2012), Q-compensated reverse time mi-
gration (Zhang et al. 2010; Zhu et al. 2014; Li et al. 2016b; Sun
et al. 2016) and Q-compensated Gaussian beam migration (Bai
et al. 2016). It is more physically consistent to compensate ampli-
tude absorption and phase dispersion during migration, since these
effects associated with anelasticity occur during the wave propaga-
tion (Zhang et al. 2010; Zhu et al. 2014; Sun et al. 2015). How-
ever, amplitude compensation during propagation suffers from se-
vere instability appearing as boosting high-frequency ambient noise
(Sun & Zhu 2015; Xue et al. 2016; Wang et al. 2017a).

Inverse Q filtering, also known as attenuation compensation tech-
nique, has been considered as an effective method to eliminate
the attenuating effect (Hargreaves & Calvert 1991; Wang 2002).
Nevertheless, direct amplitude compensation via exponential am-
plification is unstable by its nature, which, unless very carefully
designed, unavoidably boosts high-frequency noise. In the past
decade, inversion-based attenuation compensation schemes have
been increasingly applied to enhance the vulnerable stability of tra-
ditional inverse Q filtering. Zhang & Ulrych (2007) formulate the
compensation of attenuation as a least-squares problem and impose
regularization by means of Bayes’ theorem. Wang (2011) reduces
the compensation problem to an inversion problem and achieves it
by Tikhonov regularization, where the L2 norm constraint penalty
function gives smooth and stable solution at the expense of the
fidelity and accuracy. Inspired by the sparsity of the reflectivity se-
ries, inversion-based compensation schemes with L1 minimization
are proposed to achieve either in the frequency domain (Oliveira &
Lupinacci 2013; Chai et al. 2014, 2017) or time domain (Wang &
Chen 2014; Li et al. 2015). This L1-norm penalized least-squares
problem can be also called lasso (Tibshirani 1996), which can be
solved by many state-of-the-art algorithms that are widely used and
rapidly developed in compressed sensing (CS, Candes et al. 2006;
Donoho 2006; Chen & Fomel 2015; Chen 2016; Wang et al. 2017b;
Zhou et al. 2017).

Mathematically, minimizing the L1 norm is a convex problem,
thus computationally tractable. However, it may sometimes yield
suboptimal performance due to the biased approximation to L0 in
the sense that L1 is dominated by entries with large magnitudes,
unlike L0 in which all non-zero entries have equal contributions
(Gong et al. 2013; Ma et al. 2017). To address this issue, many non-
convex metrics, interpolated between the L0 and L1 norms, have
been proposed to better approximate the L0 norm. They include Lp

(Chartrand 2007; Foucart & Lai 2009; Lai et al. 2013; Woodworth &
Chartrand 2016), log-sum penalty (LSP, Candes et al. 2008), trun-
cated L1 (Wang & Yin 2010; Hu et al. 2013), capped L1 minimiza-
tion (Zhang 2010b) and minimax concave penalty (Zhang 2010a).
The aforementioned non-convex penalties can be solved by itera-
tively reweighted least squares (Sacchi 1997; Gorodnitsky & Rao
2002; Chartrand & Yin 2008; Lai et al. 2013) or multistage convex
relaxation (Zhang 2010b). Gong et al. (2013) propose a general iter-
ative shrinkage and thresholding algorithm to solve the non-convex
optimization problem for a large class of non-convex penalties.

In this paper, we propose an inversion-based seismic attenuation
compensation scheme, which can be performed via a two-step strat-
egy, that is, non-stationary sparse reflectivity inversion (NSRI, Chai
et al. 2014, 2017; Yuan et al. 2017) and wavelet convolution proce-
dure. However, the kernel matrix in NSRI suffers from more serious
ill-posedness over that of conventional sparse reflectivity inversion.
Furthermore, reflectivity inversion from noisy data imposes greater
challenge on numerical stability. It is of great importance to seek a
sparse penalty function that outperforms the existing L1 metric in
terms of stability and antinoise property. In recent years, the L1−2

Figure 1. The diagram of the direct and two-step compensation processes,
at the bottom of this figure, the green line represents direct compensation
method using A−1 and the red lines stand for two-step compensation scheme
using operators A−1W−1 and W.

metric, defined as ‖x‖1−2 = ‖x‖1 − ‖x‖2, has been widely used as
a sparsity penalty for sparse recovery in the framework of CS (Esser
et al. 2013; Yin et al. 2015). L1−2 minimization exhibits superior
performance over other existing metrics when the sensing matrix is
highly coherent (Lou et al. 2015b). Lou & Yan (2016) develop a fast
version of L1−2 minimization via incorporating the proximal opera-
tor into well-known splitting algorithms such as forward–backward
splitting and alternating direction method of multipliers (ADMM,
Combettes & Wajs 2005; Combettes & Pesquet 2011; Boyd et al.
2011). Ma et al. (2017) present a truncated L1−2 metric for sparse
recovery and rank minimization. In this paper, we adopt L1−2 norm
for exact and stable seismic attenuation compensation. Non-convex
L1−2 minimization can be decomposed into two convex subproblems
via difference of convex algorithm (DCA, Tao & An 1998; Liu &
Pong 2017), each of which can be solved efficiently by ADMM (Yin
et al. 2015; Ma et al. 2017).

The structure of the paper is organized as follows: first, we briefly
review the seismic attenuation models and non-stationary convo-
lution. Then, we formulate inversion-based compensation scheme
with both L1 and L1−2 minimization in the time domain. After that
the solver for L1−2 minimization is provided for efficiently imple-
menting seismic attenuation compensation in the framework of the
unconstrained least-squares inversion, in which DCA and ADMM
algorithms are, respectively, used for decomposing the non-convex
problem into two convex subproblems and solving these two convex
optimization problems. The superior performance of the proposed
compensation scheme based on L1−2 metric over conventional L1

penalty is demonstrated by both synthetic and field examples. In the
Discussion section, we investigate wavelet dependence and param-
eter selection of the proposed method via a series of compensation
tests on both 1-D clean and noisy data sets.
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Figure 2. Visualization of (a) the frequency-domain matrix � and (b) its coherence coefficients.

Figure 3. Visualization of (a) the time-domain matrix �̂ and (b) its coherence coefficients.

S E I S M I C AT T E N UAT I O N M O D E L S

Frequency-dependent attenuating effects are typically characterized
by an empirical formulation wherein the wavenumber is a complex
function of frequency, whose real and imaginary parts separately
signify the phase velocity cp(ω) and attenuation coefficient α(ω). In
this section, we first review the general way for frequency power-law
attenuation modeling. Intrinsic attenuation property of the subsur-
face can be empirically characterized by experimentally established
frequency power law over a wide range of frequencies. Once the em-
pirical relation between attenuation coefficient and measuring fre-
quency is established, the next step is to formulate a corresponded
phase velocity dispersion relation. K-K relations impose restric-
tions on both attenuation coefficient and velocity dispersion under
the assumption of causality. Following this path, the well-known
Kolsky–Futterman model and its modification version can be ob-
tained. After that the non-stationary convolution is formulated in the
frequency domain, which lays the foundation for inversion-based
seismic attenuation compensation.

General way for frequency power-law attenuation
modeling

As the form of Fourier kernel will affect the sign of temporal and
spatial derivation (Holm & Näsholm 2013), in this paper we denote
the space–time Fourier transform of plane wave in a homogeneous

medium as

F[p](k, ω) =
∫ ∞

−∞

∫
Rd

p(x, t)e−i(ωt−k·x)dxdt, (1)

and corresponding inverse Fourier transform as

F−1[p](x, t) = 1

(2π )d

∫ ∞

−∞

∫
Rd

p(k, ω)ei(ωt−k·x)dkdω, (2)

where R
d represents d dimensional real space. ω is angular fre-

quency, and k is wavenumber. Plane wave in a homogeneous atten-
uating medium can be expressed by

p(x, t) = ei[ωt−k(ω)·x], (3)

where the complex wavenumber k(ω) is defined by

k(ω) = ω

c(ω)
= ω

cp(ω)
− iα(ω), (4)

where cp(ω) and α(ω) are frequency-dependent phase velocity and
attenuation coefficient, respectively. K-K relations show that, as
a consequence of linearity and causality, the real and imaginary
parts of physical quantities in the frequency domain are related by
Hilbert transform (Futterman 1962; Waters et al. 2003, 2005). It
indicates that the dispersion and absorption are not independent of
one another. In other words, we can formulate a corresponded phase
velocity dispersion relation when frequency-dependent attenuation
coefficient is well established.

Frequency-dependent attenuation in subsurface media typically
follows a frequency power law in which the exponent is between
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Contours of different penalties: (a) L0, (b) Llog (LSP), (c)
Lp (p = 0.5), (d) L1−2, (e) L1 and (f) L2.

0 and 2 over the frequency range of interest. This power-law fre-
quency dependence is widely used in many branches of acoustics,
including seismology (Kibblewhite 1989; Buckingham 1997), geo-
physics (McDonal et al. 1958; Futterman 1962; Kjartansson 1979;
Li et al. 2016a), ultrasonics (Szabo 1994; Kelly et al. 2008) and
photoacoustics (Huang et al. 2012; Treeby 2013). Furthermore, the
closed-form dispersion relation can be derived when the attenua-
tion coefficient is empirically expressed as a power-law frequency
independence (Waters et al. 2003). We assume that the model for
the attenuation coefficient is

α(ω) = α(0) + α0|ω|y, (5)

where α0 and y are real constants and 0 < y ≤ 2 typically. As
attenuation coefficient in seismic exploration is nearly linear with
frequency over the seismic frequency range (McDonal et al. 1958;
Futterman 1962; Liu et al. 1976), here we consider the dispersion
relations for the case that the exponent y is near a unit (y ≈ 1), which
is given by:

1

cp(ω)
− 1

cp(ω0)
≈ − 2

π
α0ln

∣∣∣∣ ω

ω0

∣∣∣∣ , (6)

where ω0 represents the reference frequency.

Modified Kolsky–Futterman model

Kolsky (1956) assumed that frequency-dependent attenuation co-
efficient α(ω) is strictly linear with frequency over the range of
measurement (y = 1 in eq. 5):

α(ω) = α0|ω| = |ω|
2cp(ω0)Q(ω0)

, (7)

where cp(ω0) and Q(ω0) are the values of the phase velocity and
approximate Q at ω0. Substituting eq. (7) into eq. (6), we have

1

cp(ω)
= 1

cp(ω0)

(
1 − 1

π Q(ω0)
ln

∣∣∣∣ ω

ω0

∣∣∣∣
)

. (8)

Inserting frequency-dependent attenuation coefficient (7) and
phase velocity (8) into eq. (4), we have the following complex
wavenumber

k(ω) = ω

cp(ω)

(
1 − i

2Q(ω)

)

= ω

cp(ω0)

(
1 − 1

π Q(ω0)
ln

∣∣∣∣ ω

ω0

∣∣∣∣
) (

1 − i

2Q(ω)

)
. (9)

Wang & Guo (2004a) pointed out that the phase velocity formula
(8) given in the Kolsky–Futterman model is merely an asymptotic
formula for ω � ω0. As exploration seismic data have relatively
low-frequency range within 100–102 Hz, they therefore proposed
a modified Kolsky–Futterman model by introducing the following
approximation:

lim
γ→0

(
1 − γ ln

∣∣∣∣ ω

ωh

∣∣∣∣
)

=
∣∣∣∣ ω

ωh

∣∣∣∣
−γ

, (10)

where the dimensionless parameter γ = 1
π Q(ω0) and ωh is a re-

defined tuning parameter. This tuning parameter is no longer
the lowest frequency of the seismic band, but on the contrary,
the highest possible seismic frequency. Inserting the approxi-
mate formula (10) into eq. (9), we have the following complex
wavenumber

k(ω) = ω

cp(ω0)

∣∣∣∣ ω

ωh

∣∣∣∣
−γ (

1 − i

2Q(ω)

)
. (11)

The non-stationary convolution in the frequency domain

Substituting the complex wavenumber k(ω) shown in eq. (11) into
the plane wave expression, we have

p(x, t) = e
i

[
ωt− ω

cp (ω0)

∣∣∣ ω
ωh

∣∣∣−γ (
1− i

2Q(ω)

)
x

]

= eiωt e
−i ω

cp (ω0)

∣∣∣ ω
ωh

∣∣∣−γ
x
e

− ω
2cp (ω0)Q(ω)

∣∣∣ ω
ωh

∣∣∣−γ
x
. (12)

We first replace the distance x with the traveltime τ = x
cp (ω0) , and

then define the following attenuation function

a(ω, τ ) = e
iωτ

(
1−

∣∣∣ ω
ωh

∣∣∣−γ
)

e
− ωτ

2Q(ω)

∣∣∣ ω
ωh

∣∣∣−γ

≈ e
iωτ

(
1−

∣∣∣ ω
ωh

∣∣∣−γ
)

e
− ωτ

2Q(ω0)

∣∣∣ ω
ωh

∣∣∣−γ

, (13)

where the two exponential terms dominate phase dispersion and
amplitude attenuation, respectively. It is remarkable that frequency-
dependent Q(ω) can be nearly reduced to constant Q(ω0) at the
reference frequency ω0. There are two main reasons for this ap-
proximation. First, considering frequency-dependent Q(ω) is rather
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(a) (b)

(c) (d)

Figure 5. Seismic attenuation compensation on 2-D noise-free synthetic data, (a) acoustic data, (b) attenuated data, (c) compensated data using DCA-L1−2

algorithm and (d) compensated data using ADMM-L1−2 algorithm.

complicated and almost intractable for seismic attenuation com-
pensation, especially for Q estimation. Second, Q(ω) in Kolsky–
Futterman model exhibits weak frequency-dependence over a
relatively narrow frequency regime, such as seismic band (Fut-
terman 1962). The formula for non-stationary seismogram mod-
eling is introduced by many researchers (Margrave et al. 2011;
Wang & Chen 2014). Its final form in the frequency domain can be
described as

s(ω) = w(ω)
∫ T

0
a(ω, τ )r (τ )e−iωτ dτ, (14)

where s(ω) and w(ω) are the Fourier spectra of seismic record s(t)
and wavelet series w(t), respectively, r(τ ) represents reflectivity
series within T duration. For the band-limited seismic data with
frequencies range from ω1 to ωL, eq. (14) can be discretized into a
matrix-vector form

s = WAr, (15)

where the kernel matrix W represents the wavelet’s bandpass filter-
ing effects and matrix A stands for the earth’s Q filtering effects.

The vector r represents sparse reflectivity series, which can be con-
sidered as the deconvolution result of the recovered seismic records
χ . In this paper, we focus on removing the earth’s Q filtering effects
from seismic data, the compensated seismic records can be obtained
by convoluting a wavelet, that is,

χ = Wr = WA−1W−1s. (16)

Instead of solving for χ using eq. (16) directly, we perform seismic
attenuation compensation via a two-step scheme. We first solve for
sparse reflectivity series r using eq. (15) with sparsity constraint
imposed on reflectivity series r and then calculate compensated
seismic records using eq. (16). Fig. 1 shows the basic workflow
of the direct and two-step compensation, where the deconvolution
can be considered as a sparsity-promoting strategy (Wang et al.
2015; Xue et al. 2017). The frequency-domain discrete expression
of eq. (15) gives the following close-form
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Figure 6. Comparison between DCA-L1−2 and ADMM-L1−2 in terms of
residual errors versus iterations.

expression⎡
⎢⎣

w(ω1)a(ω1, τ1)e−iω1τ1 . . . w(ω1)a(ω1, τT )e−iω1τT

...
. . .

...
w(ωL )a(ωL , τ1)e−iωL τ1 . . . w(ωL )a(ωL , τT )e−iωL τT

⎤
⎥⎦

⎡
⎢⎣

r1

...
rT

⎤
⎥⎦

=

⎡
⎢⎣

s(ω1)
...

s(ωL )

⎤
⎥⎦ . (17)

I N V E R S I O N - B A S E D C O M P E N S AT I O N
I N T H E T I M E D O M A I N

Now that we have established the non-stationary convolution in the
frequency domain, inversion-based compensation can be achieved
by defining the following cost function with L1 norm

min
r

1

2
‖�r − s‖2

2 + λ ‖r‖1 , (18)

Figure 7. Seismic attenuation compensation on 2-D noisy synthetic data, (a) noisy attenuated data, (b) compensated data using L1 minimization (SNR = 9.57),
(c) compensated data using weighted DCA-L1−α2 algorithm (where α = 0.5 and SNR = 10.23) and (d) compensated data using DCA-L1−2 algorithm
(SNR = 10.77).
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Figure 8. Comparison between L1, weighted DCA-L1−α2 and DCA-L1−2 in
terms of (a) SNR versus iterations and (b) residual errors versus iterations.

where the kernel matrix � = WA responsible for both the wavelet’s
bandpass filtering effects and the earth’s Q filtering effects. The
L1-norm penalized least-squares problem (18) can be solved by
many state-of-the-art algorithms that are widely used and rapidly
developed in CS (Candes et al. 2006; Donoho 2006). The matrix �

Figure 10. The estimated effective Q model from original attenuated data
shown in Fig. 11(a), which is obtained by horizontal interpolation from five
reference Q curves.

can be considered as sensing matrix, which is required to satisfy the
restricted isometry property (RIP) with small restricted isometry
constants (Candes & Tao 2005; Chartrand & Staneva 2010). Given
a deterministic matrix �, it is generally NP-hard to verify whether
� is an RIP matrix or not (Bandeira et al. 2013). An alternative
way to predict RIP of � is the so-called coherence, which is closely
related to the RIP yet easy to examine (Donoho & Huo 2002).
That is to say, a matrix satisfying some RIP tends to have small
coherence, whereas a highly coherent matrix is unlikely to possess
small restricted isometry constants. The coherence coefficients of
the matrix � are defined as

μ�(i, j) := |�T
i � j |

‖�i‖2

∥∥� j

∥∥
2

, i 	= j, (19)

where �i and � j are arbitrary two columns from �. Fig. 2(a)
displays the frequency-domain matrix � with real (the upper
half-plane) and imaginary parts (the lower half-plane) inte-
grated together, the corresponding coherence coefficients are
shown in Fig. 2(b). As frequency-domain sensing matrix �

exhibits high coherence resulting in degraded inversion perfor-
mance, we reformulate a new misfit function by transforming
frequency-domain formula (18) into the time domain

min
r

1

2

∥∥∥�̂r − ŝ
∥∥∥2

2
+ λ ‖r‖1 , (20)

Figure 9. The Gabor spectra of five reference traces from original attenuated data shown in Fig. 11(a).
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Figure 11. Seismic attenuation compensation on 2-D field data, (a) original attenuated data and (b) compensated data using our proposed L1−2 minimization.

where the new kernel matrix �̂ is obtained by transforming �

into time domain and reshaping it as a diagonal matrix form.
Fig. 3 displays the time-domain �̂ and its corresponding coherence
coefficients. Its remarkable that directly deriving a close-form
kernel matrix �̂ in the time domain is usually difficult, therefore,
Fourier transform and matrix diagonalization provide a promising
candidate to construct �̂.

Eq. (20) presents L1 norm constrained inversion problem, which
can be also called lasso. There are many state-of-the-art algorithms
available for this problem, such as ADMM (Combettes & Wajs
2005; Boyd et al. 2011; Combettes & Pesquet 2011), fixed-point
continuation (Hale et al. 2008), fast iterative shrinkage-thresholding
algorithm (Beck & Teboulle 2009) and split Bregman (Goldstein &
Osher 2009). However, L1 minimization may sometimes yield sub-
optimal performance due to the biased approximation to L0. To
address this issue, many non-convex metrics, interpolated between
the L0 and L1 norms, have been proposed to better approximate

the L0 norm. Here, we compare several widely used non-convex
penalties with typical L0, L1 and L2 norms, which include Lp, LSP
and L1−2 metrics. Consider, for example, these potential penalty
functions for vector (x, y) can be defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, (x, y) = 0,

2, xy 	= 0,

1, else,

L1 = |x | + |y|,
L2 =

√
|x |2 + |y|2,

L p = p
√|x |p + |y|p, 0 < p < 1,

L log ∝ log(1 + (|x | + |y|)/ε), ε → 0,

L1−2 = |x | + |y| −
√

|x |2 + |y|2.

(21)
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(a) (b)

(c) (d)

(e) (f )

Figure 12. Zoomed-in view of the 2-D field data: (a), (c) and (e) original attenuated data from the boxes shown in Fig. 11(a); and (b), (d) and (f) compensated
data from the boxes shown in Fig. 11(b).

Fig. 4 shows these penalty functions for an intuitive comparison. As
we can see from Fig. 4(d), the contour lines of L1−2 penalty approach
the x- and y-axes as the values get smaller, hence promoting sparsity.
Furthermore, compared with L1 (Fig. 4e), the contour lines of L1−2

are closer to the axes when minimized, which means that L1−2

penalty behaves closer to that of L0 (Fig. 4a) and has the potential
to be much more sparsity promoting than the L1 norm.

In this paper, we incorporate L1−2 metric into the inversion-
based compensation scheme, which outperforms the existing L1

penalty for highly coherent kernel matrix. Another advantage of
L1−2 over L1 is its unbiased characterization of one-sparse vectors,
since ‖x‖1−2 = 0 if and only if ‖x‖0 ≤ 1. However, L1−2 becomes
biased and behaves like L1 as the number of leading entries (in
magnitude) increases. The misfit function with L1−2 minimization

is given as

min
r

1

2
‖�̂r − ŝ‖2

2 + λ(‖r‖1 − α‖r‖2), (22)

where the weight parameter α with the range of [0, 1] is provided to
deal with ill-conditioned matrices when L1−2 fails to obtain a good
solution (Lou et al. 2015a).

T H E S O LV E R F O R L 1−2 M I N I M I Z AT I O N

In this section, we focus on investigating an efficient solver for
L1−2 minimization problem (22). In addition, for the convenience
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(a) (b) (c)

Figure 13. Comparison of compensation performance using three reference traces extracted from Fig. 11(a) (red) and Fig. 11(b) (black) at (a) X = 100, (b)
X = 220 and (c) X = 430, respectively.

and simplicity of formulas’ deducing, we rewrite eq. (22) as the
following uniform formula:

min
x

1

2
‖Ax − b‖2

2 + λ(‖x‖1 − α ‖x‖2), (23)

with A = �̂, x = r and b = ŝ. We first briefly introduce DCA for
L1−2 minimization and then elaborate on how to solve the DCA
subproblem via ADMM. We further have a comparison between
two L1−2 implementations based on them, in terms of computational
efficiency and convergence.

DCA for L1−2 norm constrained problem

The DCA is a robust and efficient descent method introduced by Tao
& An (1998), which copes with the minimization of an objective
function F(x) = G(x) − H(x), where G(x) and H(x) are proper convex
functions. The DCA involves the construction of two sequences {xk}
and {yk}, the candidates for optimal solutions of primal and dual
programs, respectively (Tao & An 1998; Yin et al. 2015). It gives{

yk ∈ ∂ H (xk),

xk+1 = arg minx∈Rn G(x) − (
H (xk) + 〈yk, x − xk〉) ,

(24)

where yk is a subgradient of H(x) at xk. The monotonically decreas-
ing property of DCA has been proven in Appendix A. We assume
that F(x) is bounded from below, then the objective function values
of DCA are convergent (Tao & An 1998; Yin et al. 2015). The
objective function in eq. (23) naturally has the following convex
decomposition

F(x) =
(

1

2
‖Ax − b‖2

2 + λ ‖x‖1

)
− αλ ‖x‖2 , (25)

where −αλ‖x‖2 is differentiable for all x 	= 0 and subdifferentiable
at x = 0, for convenience, we only choose a subgradient yk = 0
when x = 0, then we have

yk =
{

0, if xk = 0,

−αλ xk

‖xk‖2
, otherwise. (26)

According to DCA iteration formula (24), L1−2 minimization in
eq. (25) can be solved by the following scheme (the detailed deduc-
tion can be found in Appendix B):

xk+1 = arg minx∈Rn
1

2
‖Ax − b‖2

2 + λ ‖x‖1 + 〈yk, x〉. (27)

Solving the convex subproblem via ADMM

Now that we have decomposed the original non-convex problem
(23) into two convex subproblems (26) and (27), we can there-
fore apply the ADMM to solve the unconstrained problem (27).
The trick of ADMM formula is to decouple the coupling between the
quadratic term and L1 penalty, By introducing an auxiliary variable
z, eq. (27) is equivalent to the following constrained minimization
problem:

xk+1 = arg minx∈Rn
1

2
‖Ax − b‖2

2 + 〈yk, x〉 + λ ‖z‖1

subject to x − z = 0. (28)

The augmented Lagrangian can be expressed as

Lρ(x, z, w) = 1

2
‖Ax − b‖2

2 + 〈yk, x〉 + λ ‖z‖1 + wT (x − z)

+ ρ

2
‖x − z‖2

2 , (29)
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Figure 14. Comparison of the averaged spectra from the original data shown
in Fig. 11(a) and the compensated data shown in Fig. 11(b).

where y is the Lagrangian multiplier and ρ is the penalty parameter.
The unscaled-form ADMM consists of the iterations (Boyd et al.
2011; Yin et al. 2015):⎧⎪⎪⎨
⎪⎪⎩

zl+1 = arg minz Lρ(xl , z, wl ),

xl+1 = arg minx Lρ(x, zl+1, wl ),

wl+1 = wl + ρ(xl+1 − zl+1),

(30)

where the z-update and x-update steps have the closed-form solu-
tions (Yin et al. 2015; Lou & Yan 2016), more specifically, the
z-update can be solved by soft thresholding

zk+1 = S (
xk + wk/ρ, λ/ρ

)
, (31)

where S represents soft thresholding function, and the x update can
be solved by gradient method

xk+1 = (
AT A + ρ I

)−1 (
AT b − yk + ρzk+1 − wk

)
, (32)

where (ATA + ρI)−1 can be approximated by Cholesky factorization
at the beginning for a fixed ρ.

Comparison between DCA-L1−2 and ADMM-L1−2

implementations

In the previous two sections, we have provided close-form expres-
sion of DCA and ADMM, here we will investigate two L1−2 im-
plementations based on DCA and ADMM. These two implemen-
tations are different from each other due to the distinct execution
order of the iterations (26) and (30). In the first scheme, also called
DCA-L1−2, the gradient y is updated after l1

max inner iterations of
ADMM within k1

max outer iterations; whereas in the second scheme
called ADMM-L1−2, the gradient y is updated after every iteration
of ADMM, x, z, w and y are updated simultaneously within l2

max

iterations. The pseudo-code of the these two implementations are
summarized in Algorithms 1 and 2.

We discuss the computational complexity of DCA-L1−2 and
ADMM-L1−2 implementations for inversion-based compensation
problem (23). For each iteration, ADMM-L1−2 requires to compute
the matrix-vector multiplication of an L × T matrix and an T × 1
vector for x-update step, which costs O(LT ); and z-update step
reduces to a soft-thresholding operator on an T × 1 vector, which
costs O(T ). Therefore, the complexity per iteration is O(LT ).
Assuming that the number of iterations of ADMM-L1−2 scheme

Algorithm 1 DCA-L1−2 for seismic attenuation compensation

Input: A, b, λ, ρ, α, k1
max , l1

max .
Output: x := xk .

1: Initialization: Set x0 := 0, w0 := 0, and k := 0.
2: for k = 0 . . . k1

max do
3: if x = 0 then
4: yk = 0;
5: else
6: yk = −αλ xk

xk
2
;

7: end if
8: Initialization: Set xk+1,0 := xk , wk+1,0 := wk , and l := 0.
9: for l = 0 . . . l1

max do
10: zk+1,l+1 := S (

xk+1,l + wk+1,l/ρ, λ/ρ
)
;

11: xk+1,l+1 := (AT A+ρ I )−1(AT b−yk + ρzk+1,l+1;
− wk+1,l );

12: wk+1,l+1 := wk,l + (
xk+1,l+1 − zk+1,l+1

)
;

13: Set l := l + 1.
14: end for
15: Output: xk+1 := xk+1,l and wk+1 := wk+1,l .
16: Set k := k + 1.
17: end for

Algorithm 2 ADMM-L1−2 for seismic attenuation compensation

Input: A, b, λ, ρ, α, l2
max .

Output: x := xl .
1: Initialization: Set x0 := 0, w0 := 0, y0 := 0 and l := 0.
2: for l = 0 . . . l2

max do
3: if xl = 0 then
4: yl = 0;
5: else
6: yl = −αλ xl

xl
2
;

7: end if
8: zl+1 := S (

xl + wl/ρ, λ/ρ
)
;

9: xl+1 := (
AT A + ρ I

)−1 (
AT b − yl + ρzl+1 − wl

)
;

10: wl+1 := wl + (
xl+1 − zl+1

)
;

11: Set l := l + 1.
12: end for

is N, therefore the total complexity of ADMM-L1−2 algorithm is
O(N LT ). As for DCA-L1−2, it requires to solve an L1 minimiza-
tion problem (27) iteratively, whose computational complexity is
equivalent to a miniature ADMM-L1−2 at each outer iteration. For a
fair comparison between these two implementations, we set the total
iterations of DCA-L1−2 algorithm to be same as ADMM-L1−2 imple-
mentation, that is, N = k1

maxl1
max = l2

max. As a result, the DCA-L1−2

scheme has comparable computational complexity as ADMM-L1−2

scheme. The convergence property of these two algorithms will be
examined in the next section by performing attenuation compensa-
tion on 2-D noise-free synthetic data.

E X A M P L E S

In this section, we will examine the overall performance of our
proposed L1−2 minimization in terms of inversion-based seismic
attenuation compensation for 2-D and 3-D synthetic noise-free and
noisy data and field data.
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Figure 15. Seismic attenuation compensation on 3-D field data, (a) original attenuated data and (b) compensated data using our proposed L1−2 minimization.

2-D noise-free synthetic data

In the first example, we perform attenuation compensation on 2-
D noise-free synthetic data set to verify the performance of our
proposed DCA-L1−2 and ADMM-L1−2 algorithms and to compare
their computational efficiency and convergence property. The scale
of this synthetic data is 1000 time samples per trace (12 traces in to-
tal) with the time interval of 2 ms. Figs 5(a) and (b) display synthetic
data without and with attenuation, respectively. The compensated
results obtained from both DCA-L1−2 and ADMM-L1−2 schemes
are shown in Figs 5(c) and (b), from which we can find that L1−2

constrained inversion enjoys pretty good compensation accuracy
and reliability no matter which implementation is involved. In this
example, we choose a relative small balancing parameter λ = 10−6,
the total number of iterations for both DCA-L1−2 and ADMM-
L1−2 methods are 1000 times, that is, there are 100 outer iterations
for DCA-L1−2 with each iteration containing 10 inner iterations,
whereas ADMM-L1−2 implementation has 1000 outer iterations.
We further record the runtime of these two implementations (pro-
cessor of our laptop is Intel Core i5-4460 CPU @ 3.20GHz × 4),
the total runtime t = 3.79 s for DCA-L1−2 and t = 2.86 s for
ADMM-L1−2. It indicates that ADMM-L1−2 scheme is slightly ef-
ficient than DCA-L1−2 scheme.

Apart from investigating the efficiency and fidelity of these two
approaches, we further compare the convergence property of the
DCA-L1−2 and ADMM-L1−2 algorithms by numerical tests. As
shown in Algorithms 1 and 2, the difference between these two
schemes lies in the update of variable y. For DCA-L1−2, y is updated
after whole ADMM (l1

max) iterations, while ADMM-L1−2 updates y
during each ADMM iteration. We plot residual errors of each inner
solution versus the number of iterations in Fig. 6, which illustrates
that DCA-L1−2 exhibits better convergence property over ADMM-
L1−2. The jump phenomenon on convergence curve of DCA-L1−2 is
possibly caused by the discontinuity of the gradient y between the
outer and inner iterations. In the rest of this paper, inversion-based
compensation using L1−2 minimization are implemented by DCA
scheme.

2-D noisy synthetic data

Our second test conducted on 2-D noisy synthetic data is de-
signed for demonstrating the superior compensation performance

of the proposed L1−2 metric over conventional L1 minimization. The
weighted L1−2 norm between these two metrics is also incorporated
into inversion-based compensation for a more intuitive compari-
son. The attenuated record with strong random noise is shown in
Fig. 7(a), from which we can find that deep reflectors are almost
drowned in the unwanted artefacts. To distinguish effective signal
from such noisy data and compensate their amplitude absorption
and phase distortion, we perform inversion-based compensation
with three different constraints, which include conventional L1 reg-
ularization, weighted L1−2 minimization and our proposed L1−2

metric. For measuring the compensation performance of synthetic
data examples, where one knows the reference data, we use the
signal-to-noise ratio (SNR, Chen et al. 2016; Chen 2017) metric
which is defined as

SNR = 10log10

‖χ ref‖2
2

‖χ ref − χ‖2
2

, (33)

where χ ref denotes the reference data without attenuation, and
χ denotes the compensated data. The compensated results are
respectively shown in Figs 7(b)–(d). Since the suboptimal spar-
sity approximation of the L1 metric, the compensated record in
Fig. 7(b) suffers from many non-zero disturbances which further
result in lower SNR of 9.57 and mislead reflectors recognition. The
proposed L1−2 minimization, developed for unbiased approximation
of L0 penalty, enjoys better antinoise property and higher compen-
sation fidelity with SNR of 10.77 than that of the conventional L1

constrained compensation. Furthermore, the weighted L1−α2-based
compensation achieves the moderate performance between that of
L1 and L1−2 implementations with SNR of 10.23.

We further have a comparison among these three methods in
terms of convergence property, Fig. 8 shows the SNR and residual
errors of each inner solution versus the number of iterations via L1,
weighted DCA-L1−α2 and DCA-L1−2 schemes, respectively. It indi-
cates that the proposed DCA-L1−2 exhibits higher SNR and better
convergence property than conventional L1 method. However, the
global convergence of these three algorithms is severely degraded
when compared with the noise-free case displayed in Fig. 6. In
these tests on noisy data, we select a relative large balancing pa-
rameter λ = 5 × 10−4 to suppress random noise from the original
data.
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Figure 16. Comparison of compensation performance using inline sections at Xline = 40 from (a) the original data shown in Figs 15(a) and (b), the compensated
data shown in Fig. 15(b) and time slices at t = 1 s from (c) the original data shown in Figs 15(a) and (d) the compensated data shown in Fig. 15(b).

2-D field data

In this example, we consider a compensation test on 2-D field data
using the proposed L1−2 scheme to further demonstrate its validity
and reliability. The workflow of the seismic attenuation compensa-
tion on field data can be summarized as follows:

(i) Calculate the Gabor spectra of the attenuated data via trun-
cated Gabor transform (Hargreaves & Calvert 1991; Wang 2004),
where we choose five reference traces from original attenuated data
shown in Fig. 11(a). The Gabor spectra of these traces with hyper-
bolic smoothing are shown in Fig. 9.

(ii) Estimate Q directly from the Gabor spectra via attenuation-
based or compensation-based Q analysis (Wang 2004), where the
five reference Q curves are first estimated. The whole effective Q
model shown in Fig. 10 is further obtained by horizontal interpola-
tion from these Q curves (Zhang et al. 2012).

(iii) Compensate the original data based on the estimated ef-
fective Q model via the proposed L1−2 constrained inversion

framework. The compensated result shown in Fig. 11(b) has bal-
anced amplitude and higher resolution.

For a clearer comparison between the compensated and the orig-
inal records, we plot the zoomed-in portion of Fig. 11 at three posi-
tions from shallow, medium to deep layers. Figs 12(a) and (b) show
shallow structures without and with compensation, from which we
can find that the compensated seismic section exhibits clearer re-
flectors and sharper faults compared with the non-compensated
section. Figs 12(c) and (d) display reflectors in the medium depth,
it is obvious that the compensated section has higher vertical reso-
lution and recovered amplitude, which might help to stratigraphic
interpretation and attribute extraction. In the deep subsurface of the
exploration area shown in Figs 12(e) and (f), seismic section after
attenuation compensation tends to recover the reflected signal that
is concealed and enhance the overall quality of the section. Fig. 13
display three reference traces extracted from the original sections
and the compensated results, which have further verified the ro-
bustness and applicability of the proposed compensation algorithm.
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Figure 17. Seismic attenuation compensation using inaccurate wavelet, (a) the compensated 1-D clean data and (b) their corresponding different wavelets; (c)
the compensated 1-D noisy data and (d) their corresponding different wavelets. We choose balancing parameter λ = 7 × 10−5 for clean tests and λ = 1 × 10−2

for noisy tests.

The averaged spectra from the original data shown in Fig. 11(a) and
the compensated data shown in Fig. 11(b) are displayed in Fig. 14,
which indicates that high-frequency components of seismic data are
recovered to some degree.

3-D field data

Our final example aims at exhibiting the practicability of the pro-
posed non-convex inversion method in terms of 3-D field data
compensation. Figs 15(a) and (b) present the original attenuated
field data and the compensated result using our proposed L1−2

regularized inversion-based scheme. It is obvious that the post-
stack seismic profile with amplitude compensation shows better
structural continuity and energy consistency. We also plot the in-
line sections in Figs 16(a) and (b) at Xline = 40 from both at-
tenuated and compensated profiles, from which we can find that
the spatial continuity of the reflectors and the resolution of the
thin-layer interface are significantly improved compared with the
non-compensated profile. Figs 16(c) and (d) show the time slices at
t = 1 s from Figs 15(a) and (b), respectively. Since the time slice is
critical to high-resolution seismic attribute extraction, our proposed
compensation scheme may contribute to robust fault tracking and
reliable reservoir characterization (Wu & Hale 2016; Wu & Janson
2017).

D I S C U S S I O N

We have briefly reviewed the general way for frequency power-law
attenuation characterization. Empirical relation between attenuation
coefficient and measuring frequency can be characterized by exper-
imentally established frequency power law. Then, the corresponded
phase velocity dispersion relation is mathematically derived from

K-K relations. Following this path, many well-known attenuation
models can be established. There are two main advantages of fre-
quency power-law attenuation modeling. First, this kind of models
are typically established on laboratory or field experiments, which
may fit the measured data well compared to mechanical models such
as standard linear solid and generalized Maxwell body (Liu et al.
1976; Carcione et al. 1988; Moczo & Kristek 2005; Yang et al.
2016). Second, such an approximately causality-imposed model
may exhibit more reasonable frequency-dependent attenuation and
dispersion over the model that violates the assumption of causality.
In this paper, we utilize modified Kolsky–Futterman model to con-
struct attenuation operator a(ω, τ ), which is responsible for both
amplitude absorption and phase velocity dispersion effects. At the
same time, this attenuation model is also served as the base of
subsequent Q estimation and compensation.

Once the forward model in an attenuation medium is well for-
mulated, seismic compensation can be implemented in an inversion
framework. In this paper, we perform seismic attenuation compen-
sation via first solving sparse reflectivity series and then converting
it into seismic record, rather than solving directly for compensated
seismic record χ using eq. (23) directly. The sparsity constraint in
our proposed inversion algorithm is imposed on reflectivity series r
rather than seismic record χ . As a result of the deconvolution, the
reflectivity series r has better sparsity over the seismic record χ ,
thus the deconvolution can be considered as a sparsity-promoting
strategy in the L1−2 constrained inversion method. An intuitive as-
sumption is that the proposed inversion-based compensation might
exhibit less wavelet dependence due to the presence of both de-
convolution and convolution processes. A series of tests on both
1-D clean and noisy data sets with different wavelets are conducted
to demonstrate wavelet dependence of the proposed method. As
shown in Fig. 17, on the one hand, compensation performance is
nearly independent of the types of the wavelet for both clean and
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Figure 18. Seismic attenuation compensation using different balancing parameters λ tested on both (a) 1-D clean data and (b) 1-D noisy data.

noisy data sets; on the other hand, the overall accuracy is slightly
degraded when some unwanted noises are mixed into the original
data. It further verifies that our proposed two-step compensation
scheme is free of wavelet estimation but affected by the level of
the noise. Performing noise attenuation before signal compensation
might be a feasible approach to achieve relatively high SNR and
fidelity, which will be our future work.

We would also like to discuss the trick to choose a reasonable
balancing parameter λ for seismic attenuation compensation. A se-
ries of tests on both 1-D clean and noisy data are performed to
understand the role of λ in determining the solution. The clean
seismogram is created by convolving a 30 Hz Ricker wavelet with
a known reflectivity series, whereas the noisy seismogram is pol-
luted by 20 per cent random noise. Fig. 18 shows the compen-
sated seismogram from both clean and noisy data with different
balancing parameters. Generally speaking, comparatively smaller
parameter λ is suitable for seismic data with relatively high SNR,
whereas compensation for severely noisy data usually needs a larger
regularization parameter so as to maintain stability and accuracy to
some degree. Typically, an L-curve technique is widely used to
choose λ, which starts at high λ and iteratively decreases λ, while
reusing solution at previous λ as initial guess at new λ (Hansen
1992; Xu 1998; Ng et al. 2016). This approach enables us to find a
suitable value of λ automatically and achieve the balance between
the data-fitting term and the regularization term objectively. Hence,
critically, our presented algorithms in practice should be run over
multiple choices of λ. We think that multiple choices of λ might

improve the performance of inversion, which will be further inves-
tigated our future work.

C O N C LU S I O N S

In this paper, we have derived the modified Kolsky–Futterman
model based on the causality-imposed K-K relations. An inversion-
based seismic attenuation compensation scheme in the frequency
domain is further proposed, where the L1−2 constraint is imposed
on reflectivity series to achieve an exact and stable amplitude re-
covery and phase correction. Benefited from the incoherence of the
time-domain kernel matrix, we have reformulated a more robust
time-domain compensation method in the framework of inversion.
To leverage the sparsity of the reflectivity series, we have developed
a two-step compensation scheme, in which the recovered subsurface
reflectivity series are first solved by inversion and the compensated
seismic records are then obtained by convolution. An additional
bonus of this two-step strategy is that it is nearly independent of the
estimated wavelet. Two effective implementations, denoted as DCA-
L1−2 and ADMM-L1−2, have been developed for solving the non-
convex optimization problem. Compared to conventional L1 metric,
our proposed L1−2 penalty has potential to recover exact sparse re-
flectivity series from noisy attenuated seismograms when the kernel
matrix is severely ill conditioned, which further results in enhanced
antinoise property and improved compensation fidelity. The overall
performance of the proposed L1−2 minimization is demonstrated
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by performing seismic attenuation compensation on 2-D and 3-D
noise-free and noisy synthetic and field data sets.
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A P P E N D I X A : P RO O F F O R
C O N V E RG E N C E O F D C A

Here, we briefly demonstrate that the DCA iteration formula (24)
yields a monotonically decreasing sequence of objective values.
According to the fact that xk+1 minimizes G(x) − (H(xk) + 〈yk,
x − xk〉), we have

G(xk+1) − (
H (xk) + 〈yk, xk+1 − xk〉) ≤ G(xk) − H (xk). (A1)

By the definition of subgradient yk, we have

H (x) ≤ H (xk) + 〈yk, x − xk〉,∀x ∈ R
n . (A2)

In particular, H(xk+1) ≤ H(xk) + 〈yk, xk+1 − xk〉, consequently

F(xk+1) = G(xk+1) − H (xk+1) ≤ G(xk+1) − (
H (xk)

+ 〈yk, xk+1 − xk〉)
≤ G(xk) − H (xk) = F(xk). (A3)

Thus, we have proven the monotonically decreasing property of
DCA.

A P P E N D I X B : T H E D E R I VAT I O N O F E Q.
( 2 7 )

According to DCA formula (24), we have

H (xk) + 〈yk, x − xk〉 = H (xk) + 〈yk, x〉 − 〈yk, xk〉, (B1)

where H(xk) = −αλ‖xk‖2 and yk = −αλ xk

‖xk‖2
, then

H (xk) + 〈yk, x − xk〉 = −αλ‖xk‖2 +
〈
−αλ

xk

‖xk‖2
, x

〉

−
〈
−αλ

xk

‖xk‖2
, xk

〉

= −αλ‖xk‖2 + 〈yk, x〉 + αλ‖xk‖2

= 〈yk, x〉. (B2)
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