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ABSTRACT

Prestack inversion has become a common approach in reser-
voir prediction. At present, the critical issue in the application of
seismic inversion is the estimation of elastic parameters in the thin
layers and weak reflectors. To improve the resolution and the ac-
curacy of the inversion results, we introduced the difference of L1

and L2 norms as a nearly unbiased approximation of the sparsity
of a vector, denoted as the L1−2 norm, to the prestack inversion.
The nonconvex penalty function of the L1−2 norm can be decom-
posed into two convex subproblems via the difference of convex
algorithm, and each subproblem can be solved efficiently by the

alternating direction method of multipliers. Compared with the
L1 norm regularization, the L1−2 minimization can reconstruct
reflectivities more accurately. In addition, the f-x predictive filter-
ing was introduced to guarantee the lateral continuity of the lo-
cation and the amplitude of the reflectivity series. The generalized
linear inversion and f-x predictive filtering are combined for
stable elastic impedance inversion results, and three parameters
of P-wave velocity, S-wave velocity, and density can be inverted
with the Bayesian linearized amplitude variation with offset in-
version. The inversion results of synthetic and real seismic data
demonstrate that the proposedmethod can effectively improve the
resolution and accuracy of the inversion results.

INTRODUCTION

Reservoir characteristics, such as lithology, fluidity, and porosity,
are important parameters in oil and gas exploration and develop-
ment. They can be obtained from the P-wave velocity (VP), S-wave
velocity (VS), and density (ρ) with different petrophysical models
(Karimi et al., 2010). Prestack seismic inversion can obtain more
elastic parameters than poststack seismic inversion because the am-
plitude variation with offset (AVO) phenomenon is related to VP,
VS, and ρ contrasts at an interface between two layers (Aki and
Richards, 1980). Like other inverse problems, prestack inversion
also suffers difficulties stemming from noise contamination, band
limitation, and nonuniqueness (Varela et al., 2006), so it is impor-
tant to improve the quality of the prestack seismic inversion results
by regularization. Some regularization approaches have been pro-
posed to constrain the inverse problem with a priori information to
effectively solve the ill-posed problem. Tikhonov (1963) first intro-

duces the regularization method by assuming that the inverted
parameters are smooth for a least-squares solution. Buland and
Omre (2003) develop a Bayesian AVO inversion method whose ob-
jective is to obtain the maximum posterior probability distributions
for P-wave velocity, S-wave velocity, and density, and the solutions
of the AVO inversion are the posterior Gaussian probability distri-
bution. Karimi et al. (2010) introduce Bayesian closed-skew Gaus-
sian inversion defined as a generalization of traditional Bayesian
Gaussian inversion.
Recently, great effort has been made to improve the resolution

of the inversion results based on a sparsity assumption. In general,
prestack inversion techniques for high resolution are roughly clas-
sified into two categories: stochastic and deterministic inversion
approaches, each having its own merits and demerits. The former
category of prestack inversion is being actively investigated. The
priori knowledge is derived from multivariate geostatistical model-
ing (González et al., 2008; Hansen et al., 2012; Connolly and
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Hughes, 2016; Siri and Deutsch, 2018). Stochastic inversions can
produce higher resolution results than conventional deterministic
inversions and can help delineate thin beds. However, the major
disadvantage of stochastic methods is the computational expense.
In contrast, the deterministic inversion approach can provide
high-resolution inversion results based on the deterministic sparsity
constraints in the transform domain (Yuan et al. 2015; She et al.
2018) or the time domain (Alemie and Sacchi, 2011; Pérez et al.,
2013; Chai et al., 2014). The L1 norm optimization framework was
introduced into the prestack inversion for resolving thin layers and
clearly delineating layer boundaries (Zhang and Castagna, 2011).
Recovering sparse signals from linear measurements is also one of
the central subjects of compressed sensing (CS) (Donoho, 2006).
Here, we introduce the sparse reconstruction in CS into the prestack
AVO inversion. The sparse reconstruction is conducted for the
sparsest solution to an underdetermined linear system. Because
L0 counts the number of nonzero elements, minimizing the L0 norm
is equivalent to finding the sparse solution. However, it has been
proven that it is NP-Hard to solve the optimization problem with
the L0 norm, which means that it would take too much time to ob-
tain the solution.
The convex relaxation techniques, as a kind of method to solve

the optimization problem with the L0 norm, will provide a biased
approximate solution to the L0 minimization. Therefore, the convex
relaxation techniques may sometimes yield suboptimal perfor-
mance. To address this issue, many nonconvex metrics, such as the
Lq quasi-norm with 0 < q < 1 (Chartrand and Yin, 2008), capped
L1 (Zhang, 2010), smoothly clipped absolute deviation (Fan and Li,
2001), have been proposed to better approximate the L0 norm. Re-
cently, the L1−2 norm was widely used in sparse reconstruction; the
property to be more approximate to the L0 norm and the quickness
to find a solution have been demonstrated and developed in math-
ematics (Esser et al., 2013; Lou et al., 2015). Yin et al. (2015) study
the analytical and numerical properties of L1−2 minimization for
sparse representation. The superior performance of the L1−2 norm
was verified in different applications including oversampled dis-
crete cosine basis, differential absorption optical spectroscopy,
and image denoising (Yin et al., 2015). To more appropriately
approximate the L0 norm, Ma et al. (2017a) propose a truncated
difference of the L1 and L2 norms discarding large magnitude en-
tries in the regularization term and solve the objective function with
the difference of convex functions algorithm (DCA). This method
has been validated on sparse vector recovery, matrix completion,
and magnetic resonance imaging (Ma et al., 2017a). To improve
the computational efficiency of the L1−2 minimization, Lou and
Yan (2016) incorporate the proximal operator into forward-back-
ward splitting and the alternating direction method of multipliers
(ADMM). Recently, the L1−2 norm has been used in geophysics.
Wang et al. (2018) perform seismic attenuation compensation via
first solving the sparse reflectivity series and then convolving them
with the seismic wavelet to obtain the seismic record, rather than
solving directly for the compensated seismic record. They compen-
sate the seismic record based on the stability and effective compu-
tation of the sparse reconstruction.
In this paper, we introduce the L1−2 minimization to the prestack

reflectivity reconstruction in terms of the sparsity of the reflectivity
series in the time domain. We study the ability to reconstruct the
relative weak and close reflectivities with L1−2 minimization and
demonstrate the performance to estimate the thin beds and relative

weak reflection interfaces compared with L1 minimization. The
L1−2 minimization is divided into two stages. First, the original non-
convex L1−2 norm objective function is decomposed into two con-
vex subproblems via DCA (Tao and An, 1998; Liu and Pong, 2017).
Second, each subproblem is efficiently solved by ADMM (Yin et al.,
2015).
In most cases, the inversion method does not consider the lateral

continuity of layers. When the results are combined to form an im-
age profile, the trace-by-trace inversion results may be noisy and
important geologic features may be masked (Hamid and Pidlisecky,
2015; Hamid et al., 2018). To reduce and even eliminate these de-
fects in the single-trace processing mode, a series of lateral con-
straints has been used in seismic inversion and linearized AVO
inversion. Many researchers have provided functionality for incor-
porating different types of geologic information to impose spatial
smoothness constraints in their inversion algorithm frameworks
(Delprat-Jannaud and Lailly, 1992; Zhang et al., 2013; Karimi,
2015; Huang et al., 2017a; Huo et al., 2017; Ma et al., 2017b). The
major disadvantage of the methodology of reforming the objective
function to improve the lateral continuity is that it is computation-
ally expensive because of the expansion of the coefficient matrix.
Transforming the reflectivities to impedance will magnify the lateral
discontinuity associated with the different accuracies of the reflec-
tivity reconstruction for different traces. The reconstruction accu-
racy includes the location and the magnitude of reflectivities. We
introduce the filtering method to the inversion to efficiently improve
the lateral continuity of the inversion results. It is known that the f-x
predictive filtering or its variation, i.e., f-x singular spectrum analy-
sis, has been widely used in random noise attenuation (Canales,
1984; Naghizadeh and Sacchi, 2012; Chen and Ma, 2014; Huang
et al., 2016) and seismic trace interpolation (Spitz, 1991; Porsani,
1999; Wang, 2002; Huang et al., 2017b) under the assumption that
the events are nearly linear with respect to the offset dimension.
Here, by assuming that the input seismic trace and the inverted re-
flectivity exhibit similar spatial continuity, we apply f-x predictive
filtering to the reflectivity inversion and combine it with the gen-
eralized linear inversion (GLI) to obtain the elastic impedance (EI)
with well spatial continuity.
In this paper, the prestack inversion is divided into three parts.

First, the reflectivity reconstruction is formulated with the L1−2
minimization in the time domain. The solver for the L1−2 minimi-
zation is provided for efficiently implementing reflectivity inversion
in the framework of the unconstrained least-squares inversion, in
which the DCA and ADMM algorithms are, respectively, used
for decomposing the nonconvex problem into two convex subpro-
blems. Then, GLI and the f-x predictive filtering are combined to
transform the reflectivity series to the EI of different angles for the
purpose of improving the lateral continuity. After that, three param-
eters of VP, VS, and ρ can be inverted with the Bayesian linearized
AVO inversion. To demonstrate the effectiveness of the proposed
inversion scheme, we apply it to synthetic and field data and show
the inversion results.

METHOD

Reflectivity inversion

As usual, we rely on the convolutional model of a seismic trace
under the assumption that the earth structure can be represented by a
series of horizontal layers of constant material properties separated
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by planar interfaces (Yilmaz, 2001). Hence, the angle gather can be
expressed as

bðθiaÞ ¼ AðθiaÞ � xðθiaÞ þ nðθiaÞ; ia ¼ 1; 2; : : : ; na; (1)

where θia is the incident angle, bðθiaÞ is a seismic trace, AðθiaÞ rep-
resents the source wavelet corresponding to angle θia, xðθiaÞ is the
reflectivity, nðθiaÞ stands for random noise, � denotes convolution,
and na is the number of angle gathers. We assume that the wavelet is
known and band limited, it is obtained via wavelet extraction based
on well log information or perhaps alternatively via the statistical
methodology. Equation 1 can be represented in a matrix form of
Ax ¼ b for a specific incident angle that is omitted for brevity, re-
gardless of the noise:

2
666664

b1
b2
..
.

bN−1
bN

3
777775
¼

2
66666666664

w1 0 · · · 0

..

.
w1

. .
. ..

.

wk
..
. . .

.
0

0 wk
..
.

w1

..

. . .
. . .

. ..
.

0 · · · 0 wk

3
77777777775

2
666664

x1
x2
..
.

xN−1
xN

3
777775
; (2)

where biði ¼ 1; 2; · · · ; NÞ represents the ith sample of the seismic
trace, and N is the number of sampling points, wiði ¼ 1; 2; · · · ; kÞ
represents the ith sampling point of the wavelet with a length of k.
Due to the noise contamination, band limitation, and nonunique-

ness, the numerical inversion for finding x using equation 2 is an ill-
posed problem. To obtain a solution of equation 2, regularization is
generally required. The general regularization is equivalent to solve
a constrained optimization problem:

min JðxÞ;
subject to Ax ¼ b;

Δ1⩽cðxÞ⩽Δ2; (3)

where JðxÞ denotes an objective function that is defined to describe
the characteristics of x, cðxÞ is the constraint to the solution, Δ1 and
Δ2 are the solution intervals that are given based on the prior infor-
mation. Here, we assume that the reflectivity series is sparse in the
time domain. The constrained optimization problem in equation 3
can be expressed as

min kxk1; subject to Ax ¼ b: (4)

The constrained optimization problem in equation 4 can be con-
verted to the unconstrained minimization problem:

min fðxÞ ≔ kAx − bk22 þ λkxk2; (5)

where λ > 0 is a scalar regularization parameter. The optimization
problem represented by equation 5 is also known as a Lasso prob-
lem. There are many state-of-the-art algorithms available for Lasso,
such as ADMM (Boyd et al., 2011), fixed-point continuation (Hale
et al., 2008), the fast iterative shrinkage-thresholding algorithm
(FISTA) (Beck and Teboulle, 2009), and split Bregman (Goldstein
and Osher, 2009). However, L1 minimization may sometimes yield

a suboptimal solution due to its biased approximation to L0 norm in
the sense that L1 is dominated by entries with large magnitudes;
differently, all nonzero entries have equal contributions to the L0

norm (Elad, 2010). In general, L1 minimization has two effects:
first, elimination of the insignificant nonzero elements leading to
increased sparsity and, second, reduction in the magnitude of the
nonzero elements (Jafarpour et al., 2009). These characteristics lead
to the miss of weak reflectivities and the mask of the thin beds. To
address this issue, many nonconvex metrics have been proposed to
better approximate L0. Here, we replace the L1 penalty by a novel
L1−2 norm in equation 5. The objective function for L1−2 regular-
ized reflectivity inversion can be written as

min
x

1

2
kAx − bk22 þ λðkxk1 − αkxk2Þ; (6)

where the weight parameter α in the range of [0,1] is provided to
deal with ill-conditioned matrices when the L1−2 minimization fails
to obtain a good solution (Lou et al., 2015). The value of λ > 0 is a
scalar regularization parameter. A large value of λ would generate
sparse solutions, whereas a small value of λ could make the forward
modeling results more consistent with the seismic record. Although
many researchers have studied the optimization of the regularization
parameters, it remains a complex problem to determine them appro-
priately (Tikhonov and Glasko, 1965; Clapp et al., 2004; Wang and
Sacchi, 2007; Brezinski et al., 2008). In this paper, we do not focus
on how to select optimal parameters. However, we optimize them
by trial and error. The tuning parameter λ is calibrated in terms of
the correlation coefficient between the inversion results and the true
models for synthetic tests or the well log data for the field data tests.
In equation 6, the L1−2 minimization is equivalent to the L1 mini-
mization when α is assigned to zero. Therefore, the L1 minimization
problem can be seen as a particular case in the L1−2 minimization
optimization problem.
To intuitively understand the L1−2 metric and the meaning that

L1−2 approximates better to the L0 to find sparse solution, we plot
the images in Figure 1 corresponding to L1 and L1−2 norms of a 2D
vector with two elements of x and y. The value of the L0 norm
(Figure 1a) is 0 at the origin, 1 at the axes, and 2 elsewhere. The
distribution pattern of the L1−2 metric image (Figure 1c) is closer to
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Figure 1. The images of metrics of (a) L0, (b) L1, and (c) L1−2.
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the L0 image (Figure 1a) than the L1 norm (Figure 1b), which in-
dicates that the L1−2 metric is better than the L1 norm in terms of
sparsity. Because the distribution pattern of the L0 norm means that
the solution exhibits in the axis for the least nonzero elements. The
similar distribution pattern indicates similar sparsity. Therefore, the
solution of the L1−2 minimization is more approximate to the true
sparse solution. Geometrically, minimizing a sparse measure is
equivalent to finding an interception of the straight line correspond-
ing to the linear constraints Ax ¼ b with a level set of the sparse
norm shown in Figure 1. The solution is sparser when the intersec-
tion is closer to a coordinate axis. For L1, it is possible that the
straight line coincides with a segment of a level set. In this case, L1

minimization fails to find a sparse solution. For L1−2, due to its
curved level set, the interception is more likely to occur at the co-
ordinate axis. Figure 1 demonstrates that the advantage of the L1−2
norm over L1 is its unbiased characterization of sparse vectors. It is
better for the nonconvex constraints to promote sparsity compared
with the L1 norm. However, there is a challenge of computation in a
nonconvex optimization problem. Iterative reweighted least-squares
as one of the conventional methods to solve the nonconvex mini-
mization may get stuck at a local minimum (Sacchi and Ulrych,
1995). Meanwhile, the conventional nonconvex constraints always
have a priori unknown parameters and are non-Lipschitz. Different
from them, the L1−2 norm is Lipschitz continuous and free of
parameters. Therefore, it can be minimized by the DCA without
additional smoothing or regularization (Tao and An, 1997). The
global minimum can be obtained with DCA empirically. Therefore,
the replacement of the L1 norm with L1−2 as the sparsity constraint
can improve the accuracy of the solution. Meanwhile, the computa-
tional performance can also be guaranteed with DCA. The detailed
method to solve the L1−2 minimization is shown as follows.
To solve the L1−2 minimization, we first decompose the noncon-

vex L1−2 into two convex subproblems via DCA, and then we solve
the subproblems of the L1 norm by ADMM. The DCA is a robust
and efficient descent method introduced by Tao and An (1998),
which deals with the objective function composed of the difference
of two convex functions,

FðxÞ ¼ GðxÞ −HðxÞ; (7)

where GðxÞ ¼ 1∕2kAx − bk22 þ λkxk1; HðxÞ ¼ αλkxk2. This algo-
rithm converts the original problem 7 to the calculation of two
sequences fxng and fyng iteratively:

�
yn ∈ ∂HðxnÞ;
xnþ1 ¼ min

x
GðxÞ − ðHðxnÞ þ hyn; x − xniÞ; (8)

where yn is a subgradient of HðxÞ at xn and is expressed as

yn ¼
�
0; if xn ¼ 0;
αλ xn

kxnk2 ; otherwise: (9)

In each DCA iteration, fyng can be obtained directly. Meanwhile,
an L1 regularized convex subproblem

xnþ1 ¼ argmin
x

1

2
kAx − bk22 þ λkxk1 þ hx; yni (10)

is solved to update fxng.

To transform the original problem into a form that can be solved
with ADMM, we introduce an auxiliary variable z and we redefine
the minimization problem as

xnþ1 ¼ argmin
x

1

2
kAx − bk22 þ hyn; xi þ λkzk1;

subject to x − z ¼ 0: (11)

After applying the augmented Lagrangian multiplier, the minimi-
zation problem can be expressed as

Lβ¼
1

2
kAx−bk22þhyn;xiþλkzk1þωTðx−zÞþβ

2
kx−zk22;

(12)

where β > 0 is a penalty parameter, ω is the Lagrange multiplier.
The augmented term is the square penalty term of ðβ∕2Þkx − zk22.
The unconstrained problem in equation 12 can be solved effi-

ciently by ADMM, which consists of the following steps of the
lþ 1th inner iteration of ADMM:

8<
:

xlþ1 ¼ ðATAþ βIÞ−1ðATb − yn þ βzl − ωlÞ;
zlþ1 ¼ Sðxlþ1 þ ωl∕β; λ∕βÞ;
ωlþ1 ¼ ωl þ βðxlþ1 − zlþ1Þ:

(13)

In the proposed DCA + ADMM algorithm to solve L1−2 mini-
mization, there are two layers of iterations: the outer DCA loop and
the inner ADMM loop. Their stopping condition of DCA and
ADMM is the same:

� kxkþ1 − xkk
maxfkxkþ1k2; kxkk2g

⩽ε

�
∪ ðk > MÞ; (14)

where ε > 0 is a given tolerance to control the circulation and M is
the maximum number of iterations.

Elastic impedance inversion

The reflectivity series can describe the layer boundaries, but it has
no information of the elastic parameters. It is necessary to transform
the reflectivity series to impedance and then to other parameters to
evaluate reservoirs. Much effort has been made to solve the decon-
volution problem effectively and accurately. The inverted reflectiv-
ity can be substituted into one of the standard recursion formulas to
obtain the impedance. However, the results of these recursion
schemes are sensitive to the error of the inverted reflectivity series
and the accuracy of the EI of the first sample determined from the
initial model. The relationship between the reflection coefficients
and the EI is linearized by assuming that the absolute values of re-
flection coefficients are small. For the purpose of improving the
lateral continuity of the inversion results, we combine f-x predictive
filtering and the GLI method.
The most popular seismic inversion technique being used is re-

cursive inversion. The reflectivity at the ith sampling point can be
expressed as the following function of EIiðθÞ and EIiþ1ðθÞ:

Riðθ;EIi;EIiþ1Þ ¼
EIiþ1ðθÞ − EIiðθÞ
EIiþ1ðθÞ þ EIiðθÞ

; (15)
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by which EIiþ1ðθÞ at an incident angle of θ is obtained by a given
reflection coefficient Riðθ;EIi;EIiþ1Þ and its adjacent elastic imped-
ance EIiðθÞ. Equation 15 can be rewritten to express EIiþ1ðθÞ in
terms of Riðθ;EIi;EIiþ1Þ and EIiðθÞ:

EIiþ1ðθÞ ¼
EIiðθÞ½1þ Riðθ;EIi;EIiþ1Þ�

1 − Riðθ;EIi;EIiþ1Þ
: (16)

The extended recursive inversion to all samples is expressed as

EINðθÞ ¼ EI1ðθÞ
YN
i¼2

1þ Ri−1ðθ;EIi−1;EIiÞ
1 − Ri−1ðθ;EIi−1;EIiÞ

: (17)

Expanding equation 17 using the Taylor series and truncating the
high-order terms, we obtain the reflectivity at the ith sampling
point:

Riðθ;EIi;EIiþ1Þ ¼ R0
i ðθ;EI0i ;EI0iþ1Þ

þ ∂Riðθ;EI0i ;EI0iþ1Þ
∂EIi

δEIiðθÞþ
∂Riðθ;EI0i ;EI0iþ1Þ

∂EIiþ1

δEIiþ1ðθÞ;

(18)

where R0
i ðθ;EI0i ;EI0iþ1Þ can be obtained with the initial low-

frequency EI based on well log information, δEIiðθÞ ¼ EIiðθÞ−
EI0i ðθÞ is the correction of the initial EI model. Here,
Riðθ;EIi;EIiþ1Þ denotes the reflectivity series obtained with L1−2
minimization. We can correct the initial EI model iteratively. The ma-
trix form of equation 18 can be expressed as

2
6664
δR1ðθ;EI1;EI2Þ
δR2ðθ;EI2;EI3Þ
..
.

δRN−1ðθ;EIN−1;EINÞ

3
7775 ¼ AE

2
666664

δEI1ðθÞ
δEI2ðθÞ
..
.

δEIN−1ðθÞ
δEINðθÞ

3
777775
; (19)

where

AE¼

2
666664

∂R1ðθ;EI1 ;EI2Þ
∂EI1

∂R1ðθ;EI1 ;EI2Þ
∂EI2

0 ··· 0

0
∂R2ðθ;EI2 ;EI3Þ

∂EI2
∂R2ðθ;EI2 ;EI3Þ

∂EI3
··· 0

··· ··· ··· ··· ···
0 ··· 0

∂RN−1ðθ;EIN−1 ;EIN Þ
∂EIN−1

∂RN−1ðθ;EIN−1 ;EIN Þ
∂EIN

3
777775
:

(20)

The stopping criterion for GLI is the same as for DCA and
ADMM shown in equation 14. By introducing the low-frequency
model obtained from well log data, seismic velocity analysis, or a
kriging estimation may improve the lateral continuity of the inver-
sion result of the EI and reduce the local anomaly in the inverted
result. However, there may be no obvious improvement for the thin
layers because the GLI method does not take into account the lateral
continuity of the relatively high-frequency term of the EI.
The characteristic, which a seismic event is predictable in the fre-

quency domain under the linear assumption that seismic events are
continuous in space, has been applied widely to random noise attenu-
ation and seismic trace interpolation (Canales, 1984; Spitz, 1991).

Here, we want to use this property to suppress the discontinuity
of inverted reflectivity series by applying an f-x predictive filter.
Assuming that the inverted reflectivity is a linear function of x,

thus, the reflectivity in the t-x domain can be expressed as

Rðt; hþ 1Þ ¼ Rðt − hψΔx; 1Þ; (21)

where ψ stands for the slope of the linear reflectivity series, Δx de-
notes the trace interval, and h represents the trace number changing
from 1 to Ntr. After Fourier transformation, equation 21 can be ex-
pressed in the frequency domain as

~Rðf; hþ 1Þ ¼ ~Rðf; 1Þ expð−i2πfhψΔxÞ ¼ aðf; 1Þ ~Rðf; hÞ;
(22)

where aðf; 1Þ ¼ expð−i2πfhψΔxÞ represents one-step predictor
and ~Rðf; hÞ stands for the Fourier transform of the reflectivity series
of the hth trace.
This recursion is an autoregressive (AR) model of first order be-

cause the predictive value is known in advance. The first order means
that the reflectivity series of a trace is predicted with only one known
trace. The extension of the first-order AR model to the pth-order AR
model, which predicts the reflectivity series of one trace with p
knowns, is represented as

~Rðf; hþ 1Þ ¼
Xp
i¼1

aðf; iÞ ~Rðf; hþ 1 − iÞ; (23)

where aðf; iÞði ¼ 1; 2; · · · ; pÞ is the predictive filter. There are p
unknowns to be solved. By predicting pmore traces, overdetermined
equations are constructed to obtain the filtering operator aðf; iÞ. In
terms of the assumption on the linear continuity of the events, the
tuning parameter p should be determined based on the actual seismic
records. The tuning parameter p is large when the seismic record is
simple and the events are obviously linear. And it is small when the
events in the seismic record are complicated. In the following tests,
the turning parameter p for f-x filtering is relatively small to avoid
eliminating the effective reflectivity at the cost of a relative large
amount of computation. Here, we take forward and backward AR
modeling into account to predict the reflection profile. With the f-x
prediction filter of length L, the prediction equation is

~RhðfÞ ¼
XL
j¼1

ajðfÞ ~R 0
h−jðfÞ; h ¼ Lþ 1; Lþ 2; · · · ; Ntr;

(24)

~R�
hðfÞ¼

XL
j¼1

a0
jðfÞ ~R0

hþjðfÞ; h¼1;2; ···;Ntr−L; (25)

where ~RhðfÞ and ~R�
hðfÞ represent the frequency-domain reflectivity

after forward and backward f-x predictive filtering from the original
reflectivity series ~RhðfÞ, aðfÞ is the forward predictive filter, and
a 0ðfÞ is the backward predictive filter. After the forward and back-
ward filtering, we take the average of the forward and backward pre-
dictive results as the final predictive result.
Our method to transform the reflectivity series to EI consists of

three steps:
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Step 1: Apply the forward and backward f-x predictive filter to the
reconstructed reflectivity series using equations 24 and 25, and
take the filtered reflectivity series as the input of GLI.

Step 2: Calculate the reflectivity series of the initial EI model, and
calculate the correction of the initial model with equation 19
and update the initial model.

Step 3: Repeat step 2 and take the updated model as the initial model
in step 2 until the updated amount meets the requirement.

Due to the predictable property of the reflectivity series, which is
the same as that of the seismic trace, the lateral coherency of the
final reflectivity profile can be improved by the f-x predictive filter.
As a result, the inverted EI obtained by combining GLI and f-x
predictive filtering can be improved.

AVO inversion for three parameters

The EI is expressed by (Connolly 1998, 1999)

EIðθÞ ¼ Va
PV

b
Sρ

c; (26)

where

a¼1þtan2θ; b¼−8Ksin2θ; c¼1−4Ksin2θ; K¼ðVS∕VPÞ2:
(27)

If we have EI corresponding to na ðna⩾3Þ angle gathers, three
parameters of VP, VS, and ρ can be inverted, and their relationship
can be expressed in a matrix form as

0
BBB@
lnEIðθ1Þ
lnEIðθ2Þ
..
.

lnEIðθna Þ

1
CCCA

¼

0
BBB@

1þ tan2θ1 −8Ksin2θ1 1−4Ksin2θ1
1þ tan2θ2 −8Ksin2θ2 1−4Ksin2θ2

..

. ..
. ..

.

1þ tan2θna −8Ksin2θna 1−4Ksin2θna

1
CCCA
0
@lnVP

lnVS

lnρ

1
A:

(28)

Equation 28 is a general matrix form to relate
three unknowns of ln VP; ln VS; ln ρ to na mea-
surements of lnEIðθ1Þ;lnEIðθ2Þ; ···;lnEIðθnaÞ.
In general, K can be calculated through the low-
frequency model. The practical problem is that
the coefficient matrix of equation 28 is poorly con-
ditioned unless the angle spacing is sufficiently
large. However, the angle range is small in practical
applications. There are two reasons why this angle
range is small. First, the convolutional model does
not work for the seismic data of large offsets; it is
only valid for the plane-wave propagation in iso-
tropic layered media with no geometry spread, no
scattering and transmission loss, no mode con-
verted wave, and no multiples (Mallick, 2001).
Second, the difference between the true reflectivity
of the Zoeppritz equations and AVO/EI equations
will be greater with the increasing incident angle.
To obtain a unique and stable solution of the ill-
posed problem, we invert the three parameters
based on the Bayesian rule. We compute the sol-
ution efficiently with a statistical model based on
the maximum a posteriori estimation.
First, we expand the solution of a single point

to a single trace based on the EI of different angles:

2
6664
ln EI1
ln EI2
..
.

ln EIna

3
7775 ¼

2
6664

A1 B1 C1

A2 B2 C2

..

. ..
. ..

.

Ana Bna Cna

3
7775
2
4 ln VP

ln VS

ln ρ

3
5; (29)

where ln EIi is the logarithm of the EI of the ith angle, ln VP,
ln VS, and ln ρ are the logarithms of VP, VS, and ρ of a single trace,

Table 1. The correlation coefficient between the true and
reconstructed reflectivity by L1 and L1−2 minimization from
the noise-free seismic records.

Minimization
Reflectivity

of 0°
Reflectivity

of 15°
Reflectivity

of 30°

L1 0.9530 0.9685 0.8806

L1−2 0.9964 0.9995 0.9959
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Figure 2. (a) True reflectivity series, (b) noise-free record, (c) reconstructed reflectivity
with L1−2 minimization, (d) reconstructed reflectivity with L1 minimization. The left,
middle, and right plots in each panel show the information at an angle of 0°, 15°, and 30°,
respectively.
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Ai, Bi, and Ci represent the diagonal matrixes of N × N. The
coefficient matrix on the right-hand side of equation 29 is denoted
as G, the vector on left-hand side is denoted as d, and the vector on
the right-hand side is denoted as m. Using the Bayesian rule, the
posterior distribution of m is given by

PðmjdÞ ¼ PðdjmÞPðmÞ
PðdÞ ∝ PðdjmÞPðmÞ; (30)

where PðdjmÞ is the likelihood function of the logarithm of the EI,
PðmÞ is the prior distribution, and PðdÞ is the marginal probability
distribution. Assuming the errors of d are Gaussian with the average
value of zero, we express the likelihood function as

PðdjmÞ ¼ P0 exp½−ð2σ2nÞ−1ðd −GmÞTðd −GmÞ�; (31)

where P0 ¼ 1∕ð2πÞNtrN∕2σNtrN
n , σn is the standard deviation of

the errors, which is difficult to determine. In the
following tests, the solution is relatively stable
due to the sparsity constraints in the reflectivity
reconstruction. Therefore, we assign a relatively
small value to σn to stabilize the solution and
avoid smoothing the solution. The Gaussian
probability distribution for the prior probability
distribution PðmÞ is given by

PðmÞ ¼ 1

ð2πÞ3N∕2jP jN∕2

exp

�
−
1

2

XN
i¼1

ðmi − μmÞTΣ−1ðmi − μmÞ
�
;

(32)

where Σ is the covariance matrix of 3 × 3, mi is
the three parameters at the ith sample point, and
μm is the mean of the three parameters from the
well log or the low-frequency model. Substitution
of equations 31 and 32 into equation 30, after some
algebraic operation, the objective function for the
maximum posterior probability can be expressed
as

min
m

ðd −GmÞTðd −GmÞ

þ σ2n
XN
i¼1

ðmi − μmÞTΣ−1ðmi − μmÞ:

(33)

By solving equation 33, we obtain m, which is the logarithm of
VP, VS, and ρ, and we finally obtain the inverted VP, VS, and ρ by
exponentiating the solution m.

EXAMPLES

Synthetic data example

We test the inversion method in three terms in this subsection.
First, we compare the performance of our proposed L1−2 regular-
ized deconvolution with the L1 regularized deconvolution for a

single trace with different angles. Second, we conduct the L1−2
minimization test on a synthetic angle gather with incident angles
ranging from 0° to 45°. Third, we use the SEG/EAGE overthrust
model to demonstrate the effectiveness of our algorithm in prestack
three-parameter inversion.
The first test is conducted on noise-free seismograms. The reflec-

tivity series of 0°, 15°, and 30° are shown in Figure 2a. We use a
Ricker wavelet with a dominant frequency of 50 Hz as the source.
The seismograms (Figure 2b) are generated by convolving the reflec-
tivity series with the given wavelet. The reflectivity reconstruction
results obtained by the L1−2 and L1 regularized deconvolution meth-
ods are shown in Figure 2c and 2d, respectively. In this example, we
choose a relatively small balancing parameter λ ¼ 5e − 4, α ¼ 1 to
stabilize the sparse solution, and the weight parameter α is fixed in all
of the following tests. Meanwhile, the balancing parameter λ is the
same in the L1 minimization and the L1−2 minimization. The two
methods can reconstruct the reflectivity series accurately and efficiently

Table 2. The correlation coefficient between the true and
reconstructed reflectivity by L1 and L1−2 minimization from
the noisy seismic records with S∕N � 6.

Minimization
Reflectivity

of 0°
Reflectivity

of 15°
Reflectivity

of 30°

L1 0.7988 0.8121 0.7175

L1−2 0.9326 0.9281 0.9375
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Figure 3. (a) True reflectivity series, (b) noisy record, (c) reconstructed reflectivity with
L1−2 minimization, and (d) reconstructed reflectivity with L1 minimization. The left,
middle, and right plots in each panel show the information at an angle of 0°, 15°, and 30°,
respectively.
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in the absence of noise. To illustrate the improvement of the re-
flectivity reconstruction precision with the L1−2 minimization, we
use the correlation coefficient between the true and reconstructed

reflectivity as the quantitative evaluation. Table 1 shows the correla-
tion coefficient for the noise-free seismic records. The reconstructed
reflectivity by the L1 minimization and the L1−2 minimization is

acceptable in the absence of noise.
Further, we test the method on a noisy seismic

record. Figure 3a shows the exact reflectivity
series as the reference, and Figure 3b shows a
noisy seismogram with a signal-to-noise ratio
ðS∕NÞ ¼ 6. The S/N is the ratio of the root-
mean-square amplitude of the signal to that of
the noise with normal distribution. The inverted
results with the L1 and L1−2 norms are shown in
Figure 3c and 3d, respectively. In this test, we
select a relatively large balancing parameter λ ¼
8e − 3 in the L1 and L1−2 minimizations to sup-
press the effect of random noise. The excellent
magnitude recovery property of our proposed
method is verified when the reflectivity is rela-
tively weak, and the record is embedded in the
noise (e.g., the reflectivity at 13 and 160 ms),
especially in the 15° reflectivity series with a rel-
atively small magnitude. Meanwhile, the magni-
tude of the reconstructed reflectivity with the L1

norm is smaller compared to the true reflectivity
such as the reflectivity of 30° at 77 and 129 ms.
Table 2 shows the correlation coefficient between
the true and reconstructed reflectivity from the
noisy seismic record. The correlation coefficient
decreases compared with the reconstructed
results from the noise-free seismic record. The
correlation coefficient between the true and re-
constructed reflectivity from the L1−2 minimiza-
tion is larger compared with the reflectivity
correlation coefficient from the L1 minimization.
Therefore, the reflectivity can be reconstructed
more precisely with the L1−2 norm constraint.
We next test the prestack seismic inversion

scheme based on the L1−2 minimization on a synthetic angle gather
with incident angles ranging from 0° to 45° with a gap of 5°. The
entire seismic records with different angles are applied to invert the
velocities and density. This synthetic angle gather (Figure 4a) is
generated by convoluting a wavelet with a 50 Hz dominant fre-
quency extracted from the seismic record with a section of well
log data. Figure 4b shows the noisy angle gather with S∕N ¼ 2.
In this synthetic data inversion test, σn is assigned to 10−15, and
the tuning parameter λ ¼ 10−4 is relatively small in the absence of
noise, and it is λ ¼ 5 × 10−2 in the case of a noisy seismic record
with S∕N ¼ 2. Figure 4c and 4d displays the inverted VP, VS, and ρ
(the red lines) from the noise-free synthetic data (Figure 4a) and
noisy data (Figure 4b), and the true VP, VS, and ρ (black lines),
respectively. The initial models are also plotted in Figure 4c and 4d
with blue lines, which are the low-pass-filtered well log data. We
find that the inversion results match well with the true velocities and
density when there is no noise in the data. The inversion results
shown in Figure 4d also indicate the stability of the inversion
method when we add random Gaussian noise to the synthetic traces.
Table 3 lists the correlation coefficient between the true and in-
verted elastic parameters from the seismic records without and with
noise of S∕N ¼ 2. We find that the inverted VS is easier to be

Table 3. The correlation coefficient between the true and the
inverted elastic parameters by L1−2 minimization from the
noise-free and noisy seismic records.

Seismic data P-wave velocity S-wave velocity Density

Noise-free 0.9638 0.9017 0.9476

Noisy 0.8772 0.8281 0.8533
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Figure 4. One-dimensional tests applied to a piece of real well log data. (a) The syn-
thetic traces without noise, (b) the noisy synthetic traces with S∕N ¼ 2, (c) the inversion
results of VP, VS, and density (red lines) from noise-free synthetic data, and (d) the
inversion results from noisy data of S∕N ¼ 2. The low-frequency initial models (blue
lines) and the true models (black lines) are also shown in (c and d).

Table 4. The MSE of the estimated elastic parameters from
the seismic records with L1 and L1−2 minimization combined
with and without f -x filtering.

Minimization
P-wave
velocity

S-wave
velocity Density

L1 2.7050 × 104 1.5696 × 104 784.1338

L1 with f-x filtering 2.4668 × 104 1.2932 × 104 711.6990

L1−2 2.1970 × 104 8.9134 × 103 492.6038

L1−2 with f-x filtering 2.0089 × 104 7.1800 × 103 450.1180
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contaminated by random noise and the inverted VP is more stable
and accurate compared with the other two parameters.
As a benchmark model, the SEG/EAGE overthrust model (Fig-

ure 5a–5c) is used as an inversion example. The corresponding
reflectivity model is computed from the VP, VS, and ρmodels using
the Aki-Richards equation (Aki and Richards, 1980) for the PP re-
flection coefficient, and then it is convolved with a Ricker wavelet
of a dominant frequency 40 Hz, which is discretized with a sample
interval of 1 ms to generate a discrete wavelet with 81 samples.
Three angle gathers of 0°, 15°, and 30° are applied to invert three
parameters. White Gaussian noise is added to the angle gathers
to generate the sections with an S∕N ¼ 6 (Figure 5d–5f). These
sections are used to estimate the VP, VS, and ρ models by removing
the effect of the wavelet via deconvolution and obtain the three

parameters using the Aki-Richards equation. The initial models
(Figure 6a–6c) are created by smoothing the true models. In this
synthetic test, we set the scalar parameter λ to 5 × 10−3 and the
parameter p for f-x filter to 10. The other tuning parameters are the
same as the values of the second synthetic data tests. In this syn-
thetic test, we use the mean-square-error (MSE) of the P-wave
velocity, S-wave velocity, and density to evaluate the accuracy of
the inversion results with L1 and L1−2 minimizations. To illustrate
the efficiency of the GLI combined with f-x filtering, we also
compare the inversion results with and without f-x filtering, respec-
tively. The inversion results with L1 minimization combined with-
out and with f-x filtering are shown in Figure 7, and the inversion
results with L1−2 minimization combined without and with f-x
filtering are shown in Figure 8. From the inversion results, we
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Figure 5. The true SEG/EAGE overthrust model of (a) VP, (b) VS, and (c) density. The angle gathers with S∕N ¼ 6 of (d) 0°, (e) 15°, and
(f) 30°.
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Figure 6. The initial model of (a) VP, (b) VS, and (c) density.
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Figure 7. The inversion results of (a) VP, (b) VS, and (c) density with L1 minimization without f-x filtering and (d) VP, (e) VS, and (f) density
with L1 minimization combined with f-x filtering.
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Figure 8. The inversion results of (a) VP, (b) VS, and (c) density with L1−2 minimization without f-x filtering and (d) VP, (e) VS, and (f) density
with L1−2 minimization combined with f-x filtering.
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can find some small-scale features, such as thin
beds and pinch-outs, in the overthrust model. It is
shown that the inversion results with f-x filtering
can improve the lateral stability effectively. In ad-
dition, through the MSE for the four algorithms
listed in Table 4, we find that L1−2 minimization
can obtain more accurate inversion results com-
pared with L1 minimization and the f-x filtering
may not improve the inversion results obviously.
However, the f-x filtering can eliminate the trails
and improve the lateral continuity obviously in
2D inversion results shown in Figures 7 and 8.
The magnitudes of MSE are different in P-wave
velocity, S-wave velocity, and density associated
with their different ranges of values. To summa-
rize, the L1−2 minimization can improve the ac-
curacy of the inversion results compared with
L1 minimization. Meanwhile, f-x filtering can
improve the lateral continuity of the inversion
results without losing the accuracy.

Field data example

Before prestack inversion is conducted, the
original prestack seismic data should be processed
mainly with three steps. At first, the noise is sup-
pressed for getting more stable and accurate inver-
sion results. Then, an amplitude compensation is
applied for compensating the loss of energy due to
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Figure 9. The angle gathers ranging from 3° to 24° at (a) CDP 120, (b) CDP 150,
(c) CDP 210, and (d) CDP 260.
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Figure 10. Partially stacked angle profiles of (a) small-angle range, (b) middle-angle range, and (c) large-angle range. The initial model of
(d) VP, (e) VS, and (f) density.
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spherical diffusion and formation absorption in the propagation of
the seismic wavelet, and for making sure that the final prestack am-
plitudes represent the reflection strength of subsurface interfaces as
accurately as possible. Finally, the preserved-amplitude prestack mi-
gration improves the spatial resolution and the S/N. A small 2D field
data set is used for the inversion test. We choose common depth point
(CDP) gathers in the time-angle domain of a survey line, on which
there are three known wells at CDP 136, CDP 263, and CDP 287.
The maximum incident angle is at approximately 24°. Figure 9 shows
the angle gathers at different CDPs of 120, 150, 210, and 260. The
three wells are used to establish a low frequency (high-cut frequency
of 10–15 Hz), initial velocities, and density models as shown in Fig-
ure 10d–10f. Figure 10a–10c illustrates the partially stacked angle
gathers with small, middle, and large incident angles ranging from
6° to 12°, 12° to 18°, and 18° to 24°, respectively. In the field data
test, the optimal λ is 5 × 10−2 and the turning parameter p ¼ 10 in
terms of the lateral continuity of the seismic events. Figure 11d–11f
depicts the inverted P-wave velocity, S-wave velocity, and density
with L1−2 minimization. To illustrate the advanced performance of
our method, we also show the inversion results in Figure 11a–11c
based on the model constraint that has been used widely in industry.
From the inversion results (Figure 11) and the initial models
(Figure 10d–10f), we find that there are rapid varying values of VP,
VS, and density profiles at 700 and 950 ms caused by the change of
the strata. Although the inversion results shown in Figure 11a–11c
may reveal the change of the strata, the thin beds cannot be clearly
observed. It is obvious that the resolution of the inversion results with
our method is improved.

Then, we compare the inversion results (Figure 11d and 11e)
with the well logs to evaluate its accuracy. The black lines in
Figure 11d–11f represent the location of the well at CDP 136 used
for the comparison with well logs. Because the original well log
data contain very high-frequency components, they cannot be used
directly to make comparison with the inversion results. The well log
data are processed by a low-pass filter with high-cut frequency of
70–80 Hz before the comparison is conducted. We should see
whether the trends of the inversion results agree with the filtered
well log data. Figure 12 shows the original well log data by red
lines; low-pass-filtered well log data by black lines; and inverted
VP, VS, and ρ by blue lines. From Figure 12, we see that the inverted
VP, VS, and ρ obtained with the L1−2 minimization show a good
agreement with the known logs after low-pass filtering. Though
there are also some mismatches in numerical values between the
inversion results and the well log data, they follow the same trend.
Table 5 records the correlation coefficient between the filtered well
log data and the inverted elastic parameters with L1−2 minimization
and the inversion results with the model constraint. It is found that
the correlation coefficients of three elastic parameters are larger than
0.7, which means that the accuracy of the inversion results is
acceptable.

DISCUSSION

The challenge of the inversion of thin layers and a weak reflection
interface is associated with the band limitation and noise contami-
nation. The sparsity norm plays an important role in high-resolution
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Figure 11. Estimated parameters obtained by the inversion method based on the model constrained. (a) VP, (b) VS, and (c) density. The
inversion results of (d) VP, (e) VS, and (f) density with the proposed inversion approach. The black lines represent the location of the well
at CDP 136.
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inversion. Zhang et al. (2013) propose a basis pursuit inversion al-
gorithm based on the L1 norm to resolve sharp boundaries of strata.
Because the L1 norm is dominated with the large absolute value, the
relatively weak reflectivities cannot be reconstructed accurately.
We should stress that the main point of this paper is to use the
L1−2 norm in prestack reflectivity reconstruction taking advantage
of the unbiased approximation to the L0 norm. Different from the
equal contribution to the L0 norm of each nonzero element, the L1−2
norm as an unbiased approximation to the L0 norm can provide
more accurate and sparser solution including the relative weak re-
flectivity. Wang et al. (2018) perform seismic attenuation compen-
sation via initially solving sparse reflectivity series and then
converting it into the seismic record, rather than directly compen-
sating the seismic record. They study the computational efficiency
and convergence of the L1−2 minimization. The stability and the
wavelet independence of the proposed method have been demon-
strated through synthetic tests. In this paper, we mainly study the
ability to estimate the thin beds and the weak reflection interfaces
with L1−2 minimization. It can be considered an extension of
the L1−2 minimization in Wang et al. (2018) and the sparsity
reconstruction of Zhang et al. (2013). As shown in Figure 3, the
overall accuracy of L1−2 and L1 minimizations is slightly degraded
in the presence of noise. The amplitude of the results with L1 min-
imization can hardly reflect the true situations, and the relatively
weak reflectivities may be cut away. However, L1−2 minimization
can accurately reconstruct the location of all reflectivities. In addi-
tion, we also introduce the f-x predictive filtering, GLI algorithm,
and Bayesian method for a more stable inversion results. The f-x

predictive filtering is introduced to guarantee the lateral continuity
of the location and the amplitude of the reflectivity series.

CONCLUSION

The three-parameter prestack AVO inversion scheme discussed is
formulated with the L1−2 minimization, the GLI combined with the
f-x predictive filtering and the AVO inversion based on the Baye-
sian inference framework. First, we invert the reflectivity series with
the L1−2 norm, which is solved with the DCA and the ADMM to
obtain a more accurate solution. Second, we combine the GLI and
f-x predictive filtering to improve the lateral continuity of the EI
corresponding to different angles. We calculate the three parameters
of P-wave velocity, S-wave velocity, and density based on the Baye-
sian inference framework. The advantage of our method is that we
take the following factors into account: the sparsity of the reflec-
tivity, the lateral continuity of the subsurface parameters, and the
probability distribution of the parameters to be inverted. The inver-
sion tests with synthetic data demonstrate that the inverted results
are in good agreement with the true models. The inversion test with
real seismic data also shows that the reconstructed velocities and
density fit well with the well log measurements and the layer delin-
eation is improved, which provides additional information for sub-
sequent interpretation.
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