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A B S T R A C T   

Large-scale three-dimensional (3D) seismic modeling is considered the foundation of imaging and inversion. Parallelization strategies are crucial to solving such a 
computationally intensive problem. In this paper, we focus on two factors, decomposition direction and decomposition dimension, that significantly affect the 
computational performance. The decomposition direction determines the cache hit ratio during register addressing, and the decomposition dimension influences the 
communication size. We thoroughly analyze these two factors by performing time-space domain staggered-grid finite-difference (SGFD) modeling with a set of 
decomposition strategies. Four metrics, including computation time, speedup ratio, strong scaling property, and memory usage, are introduced to evaluate the 
computational performance of each trial. After theoretical analysis and metrics testing, we conclude that the optimized domain decomposition strategy is: 
decomposing models at two dimensions, the decomposition directions are perpendicular to the fastest and the second fastest dimensions, here we refer the dimension 
in which data are continuously saved as the fastest dimension. Three examples further verify the feasibility and efficiency of the optimized parallel scheme. 
Considering that domain decomposition-based 3D seismic parallel simulation packages are seldom available in the public domain, we provide a program template for 
the optimized domain decomposition strategies as an open-source package.   

1. Introduction 

Accurate and efficient numerical techniques are required in seismic 
wavefield simulations (Etgen and O’Brien, 2007; O’Brien et, al., 2009; 
Huang and Dong, 2009a, 2009b; Chen et al., 2017; Guo and McMechan, 
2017; Wang et al., 2018a; Shukla et al., 2019), reverse time migration 
(Wang et al., 2017, 2018b; Guo and McMechan, 2018; Q. Zhao et al., 
2018; Cai et al., 2019), and full waveform inversion (Virieux and 
Operto, 2009; Raknes and Amtsen, 2016; Zhang et al., 2018a; Qu et al., 
2019). Among the various numerical methods, the finite-difference (FD) 
method is commonly used due to its easy implementation and suitability 
for parallel computing (Dablain, 1986). Current research on FD wave
field simulations mainly focuses on three aspects: improving the simu
lation accuracy, solving more complex wave equations that are similar 
to realistic situations, and reducing the computational cost. 

In general, the computation cost will increase when the simulation 
accuracy is improved or more complex wave equations are considered, 

especially for large-scale 3D models. Decomposing the computational 
tasks onto distributed clusters is a common approach to address such a 
computationally intensive problem. Many techniques in geophysics, 
including wave propagation modeling (Gao and Zhang, 2006; Sheen 
et al., 2006; Weiss and Shragge, 2013; Rubio et al., 2014), inverse 
problem solving (Zhang et al., 2015; Gokhberg and Fichtner, 2016; Fang 
et al., 2018; Chen et al., 2018a, 2018b; Li et al., 2019), migration im
aging (Yang et al., 2014; Lindstrom et al., 2016; Zhang et al., 2018b; 
Guan and Niu, 2017, 2018), and image processing (Chen et al., 2018, 
2019; X. Zhao et al., 2018), have benefited from central processing unit 
(CPU) clusters or graphics processing unit (GPU) clusters. Due to 
massive parallelism and memory hierarchy architecture, the computing 
speed of GPUs is faster than that of CPUs. However, the limited memory 
size and higher energy consumption are bottlenecks for GPUs (Said 
et al., 2017). Compared with GPUs, CPUs are usually free from memory 
limits, and CPU clusters are more prevalent. Many researchers have 
developed parallel algorithms based on CPU clusters. For instance, Olsen 
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(1995) proposed an efficient parallel method to simulate 2 min of 
long-period ground motion in the Los Angeles area, and Chu (2009) 
developed a parallel Fourier method and investigated the potential of 
using non-blocking all-to-all communications to overlap communication 
and computation. Several single instruction multiple data (SIMD)-based 
studies have also been conducted to further improve the parallel effi
ciency (e.g., Zhou and Symes, 2014). Recently, Sunway TaihuLight 
supercomputer-based large-scale nonlinear earthquake simulations 
have achieved promising results, where up to 10 million cores are 
employed efficiently, enabling the simulation of the 1976 Tangshan 
earthquake in China as an 18-Hz scenario with an 8-m resolution (Fu 
et al., 2017). 

Domain decomposition is widely used for large-scale wavefield 
simulations to improve their computational efficiency. For example, Ren 
et al. (2014) developed a parallel domain decomposition approach for 
solving the Maxwell equations by the finite element method to simulate 
3D large-scale electromagnetic induction in the earth. Weiss and 
Shragge (2013) developed a novel GPU-based parallel simulation 
approach for the 3D anisotropic elastic wave equation, in which domain 
decomposition is employed to circumvent the limited memory of an 
individual GPU. Etgen and O’Brien (2007) proposed an efficient 
out-of-core technique to improve the cache hit ratio on a single work
station. Improving the cache hit ratio is also one of the goals of this 
study; however, the difference is that we achieve this goal by choosing 
the optimal domain decomposition direction, and our scheme is 
designed for computations on distributed clusters. In addition, the pro
posed optimized domain decomposition scheme is able to reduce the 
communications among nodes through a reasonable decomposition 
dimension. This study is conducted because although decomposition 
strategies have dramatic effects on the computational efficiency, few 
studies have systematically discussed them. In this study, based on 
several existing classical parallel strategies, we propose an optimized 
domain-decomposition scheme that can make full use of the computa
tional resources and increase the computational efficiency without 
additional hardware input, and we provide a program template for the 
optimized domain decomposition strategies as an open-source package. 

The rest of this paper is organized as follows. First, we theoretically 
analyze the impact of the domain decomposition direction on the cache 
hit ratio and the effect of the domain decomposition dimension on the 
communication between nodes. We then investigate four performance 
metrics to evaluate the utility of three domain decomposition schemes 
and develop an optimized decomposition scheme after the theoretical 
analysis and performance test. Third, we describe the architecture of our 
code and several program optimization schemes. Finally, we test three 
applications on the Tianhe-1A supercomputer to demonstrate the su
perior properties of the proposed optimized parallel scheme and draw 
conclusions. 

2. Methodology 

2.1. Prior explanations and assumptions 

In this paper, we take the following first-order 3D wave equations as 
an example for illustration and simulation, 
8
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where ρ is the density, v ¼
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is the particle velocity con
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equation (1) represents the velocity-stress elastic wave equations, where 
C is the Hooke tensor matrix. When σ reduces to the scalar pressure p, C 
reduces to K ¼ ρv2, and E ¼

�
∂=∂x ∂=∂y ∂=∂z

�T, equation (1) rep
resents the first-order velocity-stress acoustic wave equations. We adopt 
the convolutional perfectly matched layer (CPML) (Komatitsch and 
Martin, 2007; Chen et al., 2014) around the model to avoid the 
boundary reflection. 

Next, we provide several explanations and assumptions related to the 
remainder of this paper. We first briefly introduce the data accessing of 
the CPU. Generally, the memory types include the processor register, 
cache memory, random-access memory (RAM), and hard disk. The 
processor register is the fastest computer memory technology with the 
least amount of storage space. Cache memory is the second fastest and 
second smallest amount of memory available in the memory hierarchy. 
RAM is much larger than the cache memory, with typically 10–100 
times slower R/W (reading and writing) latencies. The hard disk is an 
extension to the memory hierarchy that has much larger storage space 
but much greater latency. When data are requested, the CPU first ac
cesses the data from the registers; if it fails, it then accesses the data from 
the cache memory or RAM. A cache hit means the required data are 
already prestored in registers or cache memory; a high cache hit ratio 
improves the speed at which the CPU can access data, thereby improving 
the computational efficiency. Additionally, the code is hybrid pro
grammed by exploiting the hybrid message passing interface (MPI) and 
open multiprocessing (OpenMP). To make better use of the shared 
memory multithreaded features of OpenMP, we suggest setting the 
number of subdomains equal to the number of computer nodes; this 
point is explained in the next subsection about the kernel of forward 
modeling. 

For the 3D models used in this paper, we define the one-dimensional 
array index written as ii ¼ ðiz � 1ÞNyNxþ ðiy � 1ÞNx þ ðix � 1Þ, where 
Nx;Ny;Nz are the numbers of grid cells in the x-, y-, z-directions, 
respectively, ix ¼ 1; 2;⋯;Nx; iy ¼ 1; 2; ⋯; Ny; and iz ¼ 1;2; ⋯; Nz. We 
define the dimension in which the data are continuously saved as the 
fastest dimension. Thus, x is the fastest dimension, y is the second fastest 
dimension, and z is the slowest dimension. We define D as the number of 
subdomains for the 1D decomposition; Dx and Dy represent the numbers 
of subdomains in the x� and y� directions, respectively. We always set 
D ¼ DxDy in this paper. 

2.2. Optimized decomposition strategy 

When the model is too large to be calculated by a single PC or 
workstation, domain decomposition is necessary. We first theoretically 
analyze the impact of the domain decomposition direction on the cache 
hit ratio and then discuss the effect of the domain decomposition 
dimension on the communication among nodes. 

2.2.1. Domain decomposition direction 
For simplicity, we illustrate the optimal decomposition direction 

with a two-dimensional (2D) model sampled into 160 � 160 cells. 
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Decomposing this 2D model evenly into 20 subdomains gives two sce
narios: perpendicular to the fastest dimension (Fig. 1a) and perpendic
ular to the slowest dimension (Fig. 1b). The red arrows represent the 
direction in which the data are stored continuously; this direction is 
called the fastest dimension. If we calculate the wavefield at the ‘red 
point’ using a classical nine-point difference scheme, we need the 
wavefield at eight ‘blue points’ around the ‘red point’. Addressing these 
eight ‘blue points’ in each subdomain requires traversing 35 and 643 
data points (the area covered by the yellow background) in Fig. 1a and b, 
respectively. When the 256-bit advanced vector extensions (AVX) is 
adopted, which means that eight single-precision floating-point 
numbers can be simultaneously stored in the registers, data addressing 
can be finished within 5 and 81 instruction cycles in Fig. 1a and b, 
respectively. Obviously, the decomposition direction in Fig. 1a can 

dramatically increase the cache hit ratio and improve the calculation 
efficiency. For the 3D models defined in the last subsection, decom
posing the domain perpendicular to the x-direction is the best choice, 
and decomposing perpendicular to the z-direction is the worst choice. 

2.2.2. Domain decomposition dimension 
The domain decomposition dimension mainly affects the communi

cations between nodes. Since the speed of data transmission in the 
network is slower than that of the numerical calculation in the CPU, too 
many communications among the nodes will slow the overall compu
tational efficiency. Our goal is to mitigate the communication overhead 
by a reasonable domain decomposition dimension. We consider two 
cases of 1D (perpendicular to the x-direction) and 2D (perpendicular to 
the x- and y-directions) decompositions as shown in Fig. 2, where the 
blue and red regions represent the subdomains that need the most and 
least communications, respectively. 

Considering a 3D model without the PML boundary, the data size of 
the communications at each time step in the network (denoted as Gtrans) 
for the 1D and 2D decomposition cases are given by 

Gtrans ¼ 2DLNcompNzNy; (3)  

Gtrans ¼ 2DLNcompNz

�
Nx

Dx
þ

Ny

Dy

�

; (4)  

respectively, where L is the FD stencil, which is equal to half of the order 
of the spatial difference accuracy, and Ncomp represents the number of 
wavefield components that need to communicate. Detailed information 
about Ncomp is shown in Table 1. Next, we quantify the difference in 
communication caused by the different decomposition dimensions. We 
decompose a fixed-size model into different numbers of subdomains; 
detailed information is listed in Table 2. We attempt to make each node 
bear the same amount of computation. Since we assume Nx ¼ Ny in 
Table 2, for load balance considerations, we set Dx ¼ Dy. By calculating 
equations (2) and (3) with L ¼ 10, we obtain the histograms in Fig. 3a 
and b, respectively, which refer the acoustic and elastic cases. We then 
fix the model as shown in red in Table 2 but change the FD stencil from 1 
to 10. Fig. 3c and d shows how Gtrans changes with increasing FD ac
curacy for the acoustic and elastic cases, respectively. The 2D decom
position introduces fewer communications, and the more nodes that are 
used or the higher the order of FD is adopted, the greater the advantages 
of the 2D decomposition are. Additionally, the 2D decomposition re
lieves a greater communication burden in the elastic modeling than in 
the acoustic modeling. 

We did not consider the 3D decomposition scheme in this paper, 
mainly because 3D decomposition is more prone to suffering load im
balances caused by the storage of seismic records. Assuming the 3D 
model is decomposed into 64 subdomains and that the receivers are 
located at every grid point in the x-y plane, the seismic record can be 
expressed as Grecord ¼ Nx� Ny� Nt, where Nt represents the number of 
time steps. For both the 1D decomposition (64 subdomains perpendic
ular to the x-direction) and the 2D decomposition (8 subdomains 
perpendicular to x- and y-directions), every node contains the receivers 
and needs to store the same seismic record of Grecord=64; for the 3D 
decomposition (4 subdomains perpendicular to the x-, y- and z-di
rections), 16 nodes contain the receivers (these 16 nodes store the same 
seismic record of Grecord=16), but the other nodes do not to store seismic 
records. Since the hard disk writing speed is significantly slower than the 
CPU computing speed, and the overall execution time depends on the 
slowest node, the nodes that need to store seismic records in the 3D 
decomposition are likely to decrease the overall computational 
efficiency. 

3. Performance evaluation 

We have theoretically analyzed the effects of domain decomposition Fig. 1. Illustration of two model decomposition directions: (a) perpendicular to 
the fast dimension, (b) perpendicular to the slow dimension. 
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on the cache hit and communication. In this section, we evaluate the 
computational performance by implementing 3D acoustic simulations 
on a homogeneous model with 1024 � 1024 � 1024 grid points. We 
consider three scenarios: 1D decomposition perpendicular to the fastest 
dimension (denoted as 1D_f) and the slowest dimension (denoted as 
1D_s) and a 2D optimized decomposition scheme (perpendicular to the 
fastest and the second fastest dimensions). The purpose of comparing 
1D_f and 1D_s is to illustrate the effects of the decomposition direction 
on the computational efficiency, and the comparison of the 1D_f and 2D 
decomposition methods illustrates the effects of the decomposition 
dimension. 

3.1. Computation time 

Tables 3 and 4 show the computation times of a 500-timestep 
simulation. In Table 3, the FD stencil is L ¼ 5, and the number of 
nodes increases from 1 to 64 with an exponential growth rate. A com
parison of the computation times corresponding to 1D_f and 1D_s shows 
that the direction of the domain decomposition has a considerable 
impact on the computational efficiency. For the 64-node case, the 
computational efficiency of 1D_f is almost three times that of 1D_s. Then, 
we fix the nodes at 64 but increase the FD stencil from 1 to 10; the 

computation time is shown in Table 4. Not surprisingly, the calculation 
time increases with the increase of the FD accuracy. The calculation time 
of 1D_s is much longer than those of the other two schemes. The 
calculation time for 1D_f increases rapidly after L ¼ 9. We believe the 
possible reason is that as L increases, Gtrans also increases, as shown in 
Fig. 3b, but after L ¼ 9, the communication of 1D_f cannot be completely 
hidden by the ‘overlap communication and computation’ method (to be 
introduced in the next section). According to our tests, for the 2D 
decomposition, this surge occurs when L ¼ 13. 

3.2. Speedup ratio and strong scaling efficiency 

Using the data shown in Fig. 4a, we further evaluate the parallel 
performance using the metrics of the speedup ratio Sp and the strong 
scaling efficiency Ess, which are defined as 

Sp ¼
t1

tN
; (5)  

Ess¼
t1

N � tN
� 100%; (6)  

where t1 and tN represent the calculation times of the simulation 
calculated by one node and N nodes, respectively. Ideally, the speedup 
ratio equals N, and Ess equals 100%. 

Fig. 4a, b and 4c show the speedup ratios and strong scaling effi
ciencies for the 1D_s, 1D_f, and 2D decomposition methods, respectively. 
The speedup ratio of the 1D_s decomposition method does not improve 
significantly after the number of nodes exceeds 25. The speedup ratio is 
only 14.47 for 64 nodes, which is unacceptable. A comparison of Fig. 4b 
and c shows no conspicuous differences between them with fewer than 
16 nodes, but the advantages of the 2D decomposition gradually emerge 
when more nodes are used. When 64 nodes are used, the speedup ratios 
of the 1D_f and 2D decompositions are 41.22 and 52.88, respectively, 
and the strong scaling efficiencies are 64% and 82%, respectively. Thus, 
the 2D decomposition is more suitable for fine-grained parallelism. 

3.3. Memory usage 

The direction of the domain decomposition has no effect on memory 
usage, which means that the memory usages of the 1D_f and 1D_s de
compositions are exactly the same. Thus, we only compare the 1D and 
2D decomposition cases. We define the memory usage efficiency as 

EM ¼
M1

N �MN
� 100% (7)  

where the memory usage of one node is M1, and that of N nodes is MN. As 

Fig. 2. Schematic illustration of (a) 1D domain decomposition and (b) 2D domain decomposition. The blue and red regions represent the subdomains that require the 
most and least communications, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 1 
The wavefield components that need to communicate.   

Acoustic wave 
equation 

Elastic wave equation 

1D 
Decomposition 

x-direction: p vx  x-direction: 
σxx σxz σxy vx vy vz  

2D 
Decomposition 

x-direction: p vx 

y-direction: p vy  

x-direction: 
σxx σxz σxy vx vy vz 

y-direction: 
σyy σxy σyz vx vy vz   

Table 2 
Seven groups of models with different subdomains.  

Nx ¼Ny ¼Nz D ¼DxDy Dx ¼Dy 

1024 4 2 
1024 9 3 
1024 16 4 
1024 25 5 
1024 36 6 
1024 49 7 
1024 64 8  
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shown in Fig. 5, with an increasing number of compute nodes, the 
memory usage efficiency decreases for both the 1D and 2D de
compositions. However, the 2D decomposition always performs better 
than the 1D decomposition. In fact, the MPI allocates some memory for 
communication buffers to store the data to be transmitted. The curves in 
Fig. 5 indicate that the 2D decomposition leads to fewer transmitted 
data, which echoes the conclusions drawn from Fig. 3. 

4. Description of the package 

Our package aims to provide a set of 3D parallel simulation schemes 
based on the optimized decomposition strategies for propagating 

Fig. 3. Changes in Gtrans with the number of nodes for a fixed FD stencil L ¼ 10 for (a) acoustic and (b) elastic cases. The relationship of the communication burden 
with the FD stencil L for a fixed-size model as shown in the red figures in Table 1 for (c) acoustic and (d) elastic cases. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Computation times (in second) of a 500-timestep simulation for 3 decomposition 
schemes when the FD stencil L ¼ 5, and the number of nodes increases from 1 to 
64.  

Nodes 1 4 9 16 25 36 49 64 

1D_s 10100 2961 1603 1013 756 721 702 698 
1D_f 10100 2738 1222 732 495 374 290 245 
2D 10100 2730 1214 705 470 335 249 191  

Table 4 
Computation times (in second) of a 500-timestep simulation for 3 decomposition schemes when the number of nodes is 64, and the FD stencil increases from 1 to 10.  

FD stencil 1 2 3 4 5 6 7 8 9 10 

1D_s 358 381 409 441 479 513 551 599 647 698 
1D_f 132 133 138 145 153 164 176 199 269 345 
2D 132 133 137 142 148 155 163 171 180 191  
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acoustic and elastic waves. In this section, we mainly outline the ar
chitecture of our code package and underline several program optimi
zation schemes. Our package includes two parts: the optimized version 
is based on the proposed optimized 2D decomposition scheme, and the 
verification version is designed to verify the efficiency of the optimized 
decomposition scheme, in which the codes are based on the 1D_f, 1D_s, 
and 2D optimized schemes. 

We take the optimized scheme-based 3D acoustic wave modeling 
code Acoustic_de2D as an example to illustrate the architecture of our 
code. The codes can be roughly separated into three components: pre
processing, the kernel of forward modeling, and postprocessing. As 
shown in Fig. 6, each component plays an indispensable role in parallel 
computing. A brief description of each component is given below. 

4.1. Preprocessing 

The preprocessing consists of two parts. The first part is the model 
parameterization, in which we input the parameters of the model and its 
geometry, define the number of subdomains, and define the size of the 

model and the number of available compute nodes. The second part is 
designed to decompose the velocity and density model and to allow each 
node to read the velocity and density of the submodel to be simulated. 
Note that for load balancing, the object being decomposed is the model 
containing the PML region instead of the original velocity and density 
model. 

4.2. Kernel of forward modeling 

After the preprocessing, each node will perform the wavefield 
modeling on its corresponding subdomains. The package utilizes three 
methods to address the intensive computation problems. The first is the 
optimized domain decomposition strategy. The second method is to 
exploit hybrid MPI and OpenMP programming, which means that the 
domain is decomposed according to the number of compute nodes, the 
parallelism among the nodes is completed by MPI, and the parallelism 
within a node is completed by OpenMP. Due to the shared-memory 
multithreaded features of OpenMP, the communication cost within a 
node can be effectively removed (Chorley and Walker, 2010). The third 
method is communication overlap. In the context of multinode seismic 
modeling, MPI communications take up a larger fraction of the appli
cation execution time (Abdelkhalek et al., 2012). In addition to reducing 
the transmitted data by the aforementioned 2D decomposition method, 
the natural problem of MPI communication can be further overcome by 
leveraging parallelism between the processing and communication units 
to overlap the communication and computation. This classical ‘overlap 
communication and computation’ method can be outlined in the 
following steps:  

(1) Calculate the communication areas that need be exchanged with 
the neighboring subdomains.  

(2) Extract the MPI buffers from the main arrays.  
(3) Launch asynchronous repeated MPI ‘send’ and ‘receive’ 

commands.  
(4) Exchange the data of the communication areas and calculate the 

wavefield of the internal areas. Note that these two processes are 
implemented simultaneously.  

(5) Use wait operators to ensure that the two processes in (4) have 
been completed.  

(6) Update the main arrays based on the content of the MPI buffers 
received.  

(7) Repeat these operations at every time step. 

4.3. Postprocessing 

Each node will output the corresponding seismic subrecord when the 
forward modeling is completed. In the postprocessing, we need to splice 
the subrecords that are generated by all of the nodes into a complete 
seismic record. The postprocessing also includes terminating the MPI 
process and releasing memory. 

5. Application examples 

In this section, three examples, including 3D acoustic and elastic 
forward modeling and 3D acoustic RTM, are performed to verify the 
feasibility and efficiency of the proposed optimized parallel scheme. 
These numerical tests are performed on the Tianhe-1A supercomputer, 
which is provided by the National Supercomputing Center in Tianjin, 
China. 

The first numerical example simulates acoustic wave propagation in 
a realistic model of the Bohai Bay Basin shown in Fig. 7. This model was 
developed using a variety of information, including the subsurface 
geological and near-surface characteristics, prestack depth migration 
profiles, and well log data. Thus, this model fully reflects the tectonic, 
sedimentary and seismic reflection characteristics of the Bohai Bay 
Basin. This complex realistic model contains 1517 � 1601 � 2402 grid 

Fig. 4. Speedup ratios and strong scaling efficiencies corresponding to the (a) 
1D_s, (b) 1D_f, and (c) 2D decomposition methods. 
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points (the data size of the model is 22 GB), and the velocities are 
distributed over a wide range from 1700 m/s to 7000 m/s. The grid 
spacings in the x-, y-, and z-directions are 6.25 m, 6.25 m, and 5 m, 

respectively. The simulation time duration is set to 5.625 s with a time 
step of 0.45 ms; thus, there are 12500 time steps. A Ricker wavelet 
excitation source with a dominant frequency of 20 Hz is located at 
(5000 m, 4700 m, 50 m), and the receivers are located at every grid 
point on the x-y plane at a depth of 50 m. We employ 64 nodes to 
perform the simulations. Fig. 8 shows a common-shot seismic record, 
where the top shows a horizontal slice at 2.25 s, the inline profile is at 
5 km in the crossline direction, and the crossline profile is at 4.75 km in 
the inline direction. For the optimized 2D domain decomposition 
method (decomposing the model into 8 subdomains in the x- and y-di
rections, respectively), the total wall-clock time is 6231 s. With the same 
simulation time, the 1D_f (decomposing the model into 64 subdomains 
in the x-direction) and 1D_s (decomposing the model into 64 sub
domains in the z-direction)-based codes can complete the calculation in 
9800 and 3400 time steps, respectively. 

In the second numerical example, we simulate elastic wave propa
gation in a classical overthrust model. Fig. 9 shows the P-wave velocity 
model, which contains 801 � 801 � 187 grid points with a uniform grid 
spacing of 10 m. We generate S-wave velocities using the relation vs ¼

vp=1:73. The seismic record lasts 2.8 s with a time step of 0.7 ms; thus, 
there are 4000 time steps. A Ricker wavelet excitation source with a 
dominant frequency of 20 Hz is located at (4000 m, 4000 m, 30 m), and 
the receivers are located at every grid point on the x-y plane at a depth of 

Fig. 5. Memory usage efficiency with the different numbers of compute nodes. The blue and red lines represent the memory usage efficiencies corresponding to the 
1D and 2D decompositions, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. The architecture of the 3D acoustic wave modeling code 
Acoustic_de2D. 

Fig. 7. P-wave velocity model of the Bohai Bay Basin.  
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30 m. We use 64 compute nodes to perform the simulation. Fig. 10 
displays a common-shot gather of vx, where the top shows a horizontal 
slice at 1.4 s, the inline profile is at 4 km in the crossline direction, and 
the crossline profile is at 4 km in the inline direction. The total wall- 
clock times for the optimized 2D decomposition, 1D_f, and 1D_s 
schemes are 987 s, 1513 s, and 3436 s, respectively. 

It is straightforward to use the optimized parallel modeling scheme 
as the forward engine for performing 3D acoustic RTM. In the third 
example, we conduct 3D RTM on a truncated overthrust model. Fig. 11 
shows the velocity model, which contains 550 � 200 � 180 grid points 
with a uniform sampling interval of 10 m in the x-, y-, and z-directions. 
The model is decomposed into 11 equal subdomains in the x-direction 
(the fastest dimension) and 4 equal subdomains in the y-direction (the 
second fastest dimension). In the observation system, 28 � 10 sources 

are distributed in the x- and y-directions, respectively. The time step is 
0.6 ms, and the record time is 2.1 s. The point sources are excited by a 
Ricker wavelet with a dominant frequency of 30 Hz. Fig. 12 shows the 
migrated image with the normalized crosscorrelation imaging condi
tions, where the inline profile shows the image at 0.6 km in the crossline 
direction, and the crossline profile shows the image at 1.2 km in the 
inline direction. The wall-clock time of the migration is 25148 s on 44 
compute nodes. 

All three examples demonstrate the ability of the optimized 
decomposition strategies in handling large-scale simulations. Addition
ally, due to the fine speedup ratio and strong scaling efficiency of the 
proposed 2D domain decomposition scheme, better computation times 
will likely be attained when more compute nodes are employed. 

Fig. 8. A 3D acoustic common-shot gather computed by 64 nodes on the 
Tianhe-1A supercomputer cluster. 

Fig. 9. P-wave velocity of the overthrust model.  

Fig. 10. A 3D elastic common-shot gather computed by 64 nodes on the 
Tianhe-1A supercomputer cluster. 
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6. Conclusions 

We systematically analyzed the impact of the domain decomposition 
direction on the cache hit ratio and the effect of the domain decompo
sition dimension on the communication among nodes. The theoretical 
analysis showed that the 2D decomposition scheme that decomposes the 
domains perpendicular to the fastest and second fastest dimensions is a 
better choice in most cases. Four performance metrics confirm our 
theoretical analysis and the efficiency of the proposed decomposition 
scheme. Three examples further demonstrate the feasibility of the pro
posed optimized parallel scheme for large parallel clusters. The opti
mized decomposition scheme is applicable to the traditional or other 
time-space domain high-order finite difference methods. 

7. Computer code availiability 

The package is available from GitHub at https://github.com/Geo-r 
eader/ODD. 
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