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Three-Operator Proximal Splitting Scheme
for 3-D Seismic Data Reconstruction

Yufeng Wang, Hui Zhou, Shaohuan Zu, Weijian Mao, and Yangkang Chen

Abstract—The proximal splitting algorithm, which reduces
complex convex optimization problems into a series of smaller
subproblems and spreads the projection operator onto a convex
set into the proximity operator of a convex function, has recently
been introduced in the area of signal processing. Following the
splitting framework, we propose a novel three-operator proximal
splitting (TOPS) algorithm for 3-D seismic data reconstruction
with both singular value decomposition (SVD)-based low-rank
constraint and curvelet-domain sparsity constraint. Compared
with the well-known forward-backward splitting (FBS) method,
our proposed TOPS algorithm can be flexibly employed to
recover a signal satisfying double convex constraints simultane-
ously, such as low-rank constraint and sparsity constraint used in
this letter. We have used both synthetic and field data examples to
demonstrate the superior performance of the TOPS method over
traditional SVD-based low-rank method and curvelet-domain
sparsity method based on the FBS framework.

Index Terms— Convex optimization, low rank, sparsity, three-
operator proximal splitting (TOPS).

I. INTRODUCTION

ITH the development of nonlinear analysis in math-
Wematics in the late 1950s, convex optimization has
become increasingly prevalent for computing reliable solutions
in a broad spectrum of applications [1], [2], which can be
generally formulated as the following form:

mﬁg}v i)+ Lx)+ -+ fnx) ey

where f1, f»,..., fim are a series of convex functions. Con-
ventional smooth optimization techniques, such as gradient-
based methods, may fail to tackle this problem when some
of the convex functions are not differentiable. Operator
splitting schemes provide a feasible solution to overcome
this limitation by splitting complex problems into a set of
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smaller subproblems that can be solved individually [3]-[6].
In the past decade, many large-scale applications in machine
learning, signal processing, and imaging have stimulated a
significantly increased interest in operator-splitting-based algo-
rithms, such as forward-backward splitting (FBS) [3], [7],
Douglas—Rachford splitting (DRS) [4], forward—backward—
forward splitting [5], and their generalizations and enhance-
ments, such as generalized FBS [8] and three-operator
splitting (TOS) [6].

Projection onto convex sets, which is designed for syn-
thesizing a signal satisfying simultaneously several convex
constraints, has become one of the most widely used convex
optimization splitting algorithms in digital signal process-
ing [9], [10]. However, projection methods are not appropriate
to tackle problem (1) with more general constraints. The
proximity operator of a convex function is a natural extension
of the notion of a projection operator onto a convex set [1], [7].
Based on operator splitting scheme, the proximal formalism
provides a unifying framework for analyzing and developing
a broad class of convex optimization algorithms, such as
iterative shrinkage thresholding [11], [12] and alternating-
direction method of multipliers [1].

In this letter, we propose a three-operator proximal
splitting (TOPS) method for 3-D seismic data reconstruc-
tion, which is an indispensable precondition procedure to
remove sampling artifacts and to obtain high-quality seis-
mic data [13], [14]. In comparison with conventional two-
operator-splitting-based algorithms (e.g., FBS and DRS) men-
tioned above, TOPS scheme proposed here is particularly well
adapted for synthesizing a signal satisfying simultaneously
double convex constraints. Motivated by the low-rank property
of seismic signal and sparsity property of seismic signal in the
sparse transform domain [15]-[17], we therefore propose the
TOPS method with both singular value decomposition (SVD)-
based low-rank constraint and curvelet-domain sparsity con-
straint for seismic data reconstruction. Unlike the recently
proposed hybrid rank-sparsity constraint (HRSC) model [16],
our proposed TOPS scheme is a mathematically convergent
algorithm to handle optimization problem satisfying double
convex constraints simultaneously, whereas HSRC is more
likely a hybrid strategy, where rank reduction and sparsity-
promoting transforms are two specific constrains. To further
demonstrate the feasibility and superior performance of our
proposed algorithm, we conduct 3-D seismic data recovery in
the framework of TOPS with double constraints using both
synthetic and field data examples. For comparison, the results
obtained by conventional FBS with individual low-rank con-
straint and individual sparsity constraint are also provided.
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II. METHODS

In this section, we first briefly introduce the general seismic
reconstruction problem in the viewpoint of convex optimiza-
tion problem. We also investigate two classes of widely
used convex constraints, namely, the low-rank and sparsity
constraints. We discuss in detail the conventional FBS algo-
rithms with single constraint and TOPS algorithm with double
constraints.

A. Seismic Data Reconstruction

In many signal recovery problems such as image inpainting
and interpolation, we record an observation dgps of original
data d degraded by a sampling matrix S and corrupted by
noise. In the spirit of convex optimization problem, let us
suppose that f;,, in problem (1) is S-Lipschitz differentiable

1
Fn(@d) = 5 || Sd = dobs I3 2)

which leads to Lipschitz constant f =| S 2. Hence, the gen-
eral seismic data reconstruction problem can be summarized as

m—1

. 1 2
min ;fz(d) ot 1S = dons I3 3
where (1/2) || Sd — dops ||% plays the role of a data fidelity
term and f; models a priori knowledge about d, which can
be both smooth and nonsmooth. Benefited from the operator-
splitting scheme, each nonsmooth constraint function in (3) is
involved via its proximity operator individually.

In this letter, we adopt both low-rank constraint and sparsity
constraint to recover 3-D seismic data. More specifically,
we pose low-rank constraint on seismic data by utilizing
singular value thresholding with its proximity operator as

prox; ;(d) = Udiag(prox; ; (4))V" )

where d = Udiag(d)V’ is the SVD of d. prox;, is the
proximity operator with an input parameter A. diag denotes
a diagonal matrix composed of the singular values after
SVD. In addition to the low-rank constraint, we also conduct
sparsity constraint by transforming seismic data into curvelet
domain [18]. Thus, the proximity operator can be expressed
as

prox; ;(d) = C~'prox; ;(Cd) (5)

where C and C~! denote a pair of forward and inverse curvelet
transforms, respectively.

B. Forward—Backward Splitting Scheme

We consider two (m = 2) functions in (3) with f> being
f-Lipschitz differentiable. The solutions to this convex opti-
mization can be characterized by the following iteration:

d“*! = prox; , (@ — 2V f2(d")) (6)

where 1 is a step-size parameter. This type of scheme is known
as an FBS algorithm, which breaks up every iteration step into
a forward gradient step using function f> and a backward
proximal step using function fj. This algorithm converges
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Fig. 1. (a) Synthetic data. (b) Decimated synthetic data with 50% randomly
removed traces.

SVD-based FBS

Time (s)
0.8 0.6 0.4 0.2

Time (s)

Time (s)

0.8 0.6 04 0.2
Time (s)

08 0.6 04 0.2

40
inline inline

(©) (d)

TOPS Erorr

Time (s)
Time (s)

o
o
b
o
It
o
@,
o

inline

inline

(e) )

Fig. 2. Reconstructed synthetic data using (a) SVD-based FBS, (c) curvelet-
based FBS, and (e) TOPS. The corresponding error of (b) SVD-based FBS,
(d) curvelet-based FBS, and (f) our proposed TOPS scheme. Thresholding
factor w = 0.1 for SVD-based FBS, w = 0.05 for curvelet-based FBS, and
w1 = 0.05 and wr = 0.1 for TOPS.

with rate O(1/k) when f, is f-Lipschitz differentiable and
step size 1 € (0,1/p]. The convex function f; in (6) can
be any convex constraint function that aims at promoting the
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Fig. 3. Eighth crossline slice of (a) original data, and the reconstructed
data using (b) SVD-based FBS, (c) curvelet-based FBS, and (d) our proposed
TOPS scheme.

performance of signal recovery. Seismic data reconstruction
problem in the framework of FBS with individual SVD-based
low-rank constraint thus can be implemented in Algorithm 1.

Algorithm 1 SVD-Based FBS Algorithm

Input: Observed seismic data dops; sampling matrix S; step
size parameter 1; thresholding factor w; iteration number
niter; fixed-point residual r; tolerance for residual r;.

Output: Recovered seismic data d.

1: Initialize: any initial do;

2: for k =1---niter do

3 d® «— d® — AS(dops — d®);

4 d® < Udiag(prox; ;(wd®))VT;

5: r,(k) < norm(dyps — d®)/norm(d®));

6: rgf) <« norm(d(k) — d(k_]));

7

8

if rgf) <ry | rt(k) < r; then

break;
9: end if
10: end for

Algorithm 2 demonstrates the basic framework of curvelet-
based sparsity constrained FBS algorithm.

C. Three-Operator Splitting Scheme

The TOS scheme was recently proposed in [6] to optimize
composite objective functions with two possible nonsmooth
convex functions for which we have access to their proximity
operator. Here, we extend the case of m = 2 to m = 3 in
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Algorithm 2 Curvelet-Based FBS Algorithm

Input: Observed seismic data dgps; sampling matrix S; step
size parameter /; thresholding factor w; iteration number
niter; fixed-point residual rs; tolerance for residual r;.

Qutput: Recovered seismic data d.

1: Initialize: any initial do;

2: for k =1---niter do

3 d® «— d® — AS(dgps — dX);

4
5: r,(k) <« norm(dops — d(k)) /norm(d(k));
6: rsp < norm(d® — @%b,

7 i r <rp (| <x then
8 break;

9: end if

10: end for
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Fig. 4. (a) Field data. (b) Decimated field data with 50% randomly removed

traces.

problem (1) and recall the convex optimization problem in
the context of seismic data recovery

. 1
min @ fi(d) + 2 fo(d) + = || Sd — dobs II3 @)
deRV 2

where w; and wy are penalty parameters. An averaging oper-
ator T is also provided to encode a solution to problem (7),
i.e., solving the following fixed point equation [6]:

dl = (1 = yod* + T ®)
where y; is a relaxation parameter and

T = I—prox,, + prox, s o (2prox;;, —I—1V f3 o prox, )
©)

where f3 denotes the data fidelity term (1/2) || Sd — dops ||%;
thus, (8) can be implemented as follows.

For k =0,1,...,niter, do the following.

1) Get d’z‘ = prox;, ().

2) Get d} = prox;, (2d5 —d* — AV f3(d})).

3) Get d! =d* + y (df — db).

In this letter, we combine TOS scheme with the essence
of proximal algorithm, and further formulate a general TOPS
framework containing both SVD-based low-rank constraint
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Fig. 5. Reconstructed field data using (a) SVD-based FBS, (c) curvelet-
based FBS, and (e) TOPS. The corresponding error of (b) SVD-based FBS,
(d) curvelet-based FBS, and (f) our proposed TOPS scheme. Thresholding
factor w = 1 for SVD-based FBS, w = 10 for curvelet-based FBS, and
w1 = 10 and wp = 1 for TOPS.

and curvelet-domain sparsity constraint. Then the above seis-
mic data recovery problem can be specifically represented as

. 1
min oy || Cd ||y +2 [ d [« += || Sd — dobs 3. (10)
d eRN 2

The detailed algorithm workflow of the TOPS method with
double convex constraints is shown in Algorithm 3.

III. EXAMPLES

In this section, we use both synthetic and field examples
to demonstrate the superior performance of our proposed
TOPS scheme over traditional FBS scheme regarding seismic
reconstruction. All of the following examples are reproducible
when MATLAB and Madagascar [19] platforms are both
available.

The synthetic data presented here are a combination of
several hyperbolic reflectors and several faults. The original
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Algorithm 3 Double-Constrained TOPS Algorithm

Input: Observed seismic data dgps; sampling matrix S; step
size parameter A; penalty parameters w; and w»; iteration
number niter; fixed-point residual r; tolerance for resid-
ual r;.

Output: Recovered seismic data d.

1: Initialize: any initial do;

2: for k =1---niter do

3: dg‘) < Udiag(prox; ¢, (o2 dO)HvT,

4 dl — cprox;, (i C12d5) —d® — iS(dobs — aS)1);
5: d(k) <« d(k) + Vk (dgk) _ d(Zk))’
6: r,(k) < norm(dgps — d(k)) /norm(d(k));
7: rgp < norm(d® — d*—D)y;
8. if rgp <rys |l rgk) < r; then
9: break;
10: end if
11: end for
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Fig. 6. Eighth crossline slice of (a) original data and the reconstructed data
using (b) SVD-based FBS, (c) curvelet-based FBS, and (d) TOPS scheme.

data and observed data decimated by randomly removing
50% traces are shown in Fig. 1(a) and (b), respectively.
Fig. 2(a), (c), and (e) shows the recovered data using the
SVD-based FBS scheme, the curvelet-based FBS scheme,
and the proposed double-constrained TOPS scheme, and
Fig. 2(b), (d), and (f) displays their corresponding errors com-
pared with the original data shown in Fig. 1(a). The error here
means the difference between the reconstructed data and the
clean complete data, which is thought to be the exact solution.
The eighth crossline sections from Figs. 1(a) and 2(a)—(e) are
shown in Fig. 3, from which we can conclude that the
proposed TOPS algorithm enjoys a much better reconstruction
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Fig. 7.  (a) Normalized coefficients from SVD and curvelet transform.
(b) Convergence diagrams of three algorithms.
TABLE I

MSE AND RUNTIME OF SVD-BASED FBS, CURVELET-BASED FBS,
AND TOPS TESTED ON SYNTHETIC AND FIELD DATA

Models FBS-svd | FBS-curvelet | TOPS

Synthetic MSE (_>< 10—%) 4.005 4.273 3.222
Runtime (s) 4674 588.3 7237

Field MSE (_>< 10-3) 2.594 3.064 1.402
Runtime (s) 39.3 340.8 381.3

performance than the traditional FBS algorithms with single
constraint.

The field data example shown in Figs. 4-6 aims to
further verify the feasibility and advantage of the TOPS
scheme. As shown in Fig. 4(b), we resample the field data
by randomly removing 50% traces from the original data
shown in Fig. 4(a). Fig. 5(a), (c), and (e) shows the final
results using the traditional FBS algorithms and our pro-
posed TOPS algorithm, and their corresponding errors are
displayed in Fig. 5(b), (d), and (f), respectively. It is obvious
that the proposed approach can obtain an almost perfect
recovery [Fig. 5(e)] compared with the original data shown
in Fig. 4(a). However, the reconstructed data obtained by
SVD-based FBS approach [Fig. 5(a)] suffer from some striped
artifacts, which destroy the horizontal consistency of the
reflectors. As shown in Fig. 5(c), the seismic data recovered
by FBS method by imposing sparsity constraint in curvelet
transform domain exhibit better spatial coherency, but remain
some notable residual noise compared with the result shown
in Fig. 5(e). Fig. 6(a)—(d) shows the eighth crossline slices of
Figs. 4 and 5(a), (c), and (e), respectively. From these recov-
ered results in Figs. 5 and 6, we can confirm that the proposed
TOPS scheme obtains an obvious improvement in terms of the
fidelity and coherency.

In this letter, we thoroughly analyze some important issues
about the proposed algorithm, such as parameter selection,
convergence property, reconstruction fidelity, and computa-
tional complexity. Fig. 7(a) shows normalized coefficients
from SVD and curvelet transform, which serves as a reference
for selecting an appropriate penalty parameters w; and w; for
TOPS (e.g., preserving 50% largest coefficients). Convergence
diagrams of three algorithms are shown in Fig. 7(b), which
demonstrates the superior convergence property of the pro-
posed TOPS scheme. Besides, to quantify the performance
of TOPS algorithm in terms of fidelity and computation,
we record the runtime (processor of our laptop is Intel Core
15-4460 CPU @ 3.20 GHz x 4) and mean square error (MSE)
of three algorithms via tests on both synthetic and field
data (Table I).
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IV. CONCLUSION

We have proposed a novel TOPS scheme for 3-D seismic
data reconstruction. In the TOPS framework, we simulta-
neously consider both SVD-based low-rank constraint and
curvelet-domain sparsity constraint. The TOPS can be flexibly
used to recover a signal that satisfies simultaneously dou-
ble convex constraints, and to achieve obviously better data
recovery performance than the traditional SVD-based low-
rank and curvelet-domain sparsity-based methods following
the FBS framework. Both synthetic and field data exam-
ples demonstrate the superior performance of the proposed
method in obtaining high-fidelity reflection amplitude with less
restoration artifacts.
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