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ABSTRACT

Reverse time migration (RTM) for attenuating media should
take amplitude compensation and phase correction into consid-
eration. However, attenuation compensation during seismic
propagation suffers from numerical instability because of the
boosted high-frequency ambient noise. We have developed a
novel adaptive stabilization method for Q-compensated RTM
(Q-RTM), which exhibits superior properties of time variance
and Q dependence over conventional low-pass filtering-based
method. We derive the stabilization operator by first analytically
deriving k-space Green’s functions for a constant-Q wave equa-
tion with decoupled fractional Laplacians and its compensated
equation. The time propagator of Green’s function for the vis-
coacoustic wave equation decreases exponentially, whereas that

of the compensated equation is exponentially divergent at a high
wavenumber, and it is not stable after the wave is extrapolated
for a long time. Therefore, the Green’s functions theoretically
explain how the numerical instability existing in Q-RTM arises
and shed light on how to overcome this problem pertinently. The
stabilization factor required in the proposed method can be
explicitly identified by the specified gain limit according to
an empirical formula. The Q-RTM results for noise-free data
using low-pass filtering and adaptive stabilization are compared
over a simple five-layer model and the BP gas chimney model to
verify the superiority of the proposed approach in terms of fidel-
ity and stability. The Q-RTM result for noisy data from the BP
gas chimney model further demonstrates that our method enjoys
a better antinoise performance and helps significantly to en-
hance the resolution of seismic images.

INTRODUCTION

When seismic waves travel through the earth subsurface, the
absorption and dispersion caused by the anelasticity of the
subsurface will inevitably degrade the quality of seismograms,
decrease the resolution of migrated images, and eventually affect
the reliability of seismic interpretation. These frequency-
dependent attenuating effects can be investigated by mathemati-
cal modeling (Liu et al., 1976; Carcione et al., 1988), laboratory
measurements (Wuenschel, 1965; Wang et al., 2007, 2010), and
pulse propagation experiments in the field (McDonal et al., 1958;
Li et al., 2016a). It is essential to compensate amplitude loss and
phase distortion. In general, attenuation compensation in geo-
physics can be roughly classified into two categories: seismic
record-based compensation and propagation-based compensa-
tion. The former category of compensation methods includes
time-varying deconvolution (Clarke, 1968; Griffiths et al.,

1977; Margrave et al., 2011), time-variant spectral whitening
(Yilmaz, 2001), and inverse-Q filtering (Hargreaves and Calvert,
1991; Wang, 2002, 2006). All of these processing methods are
conducted to directly enhance the resolution of attenuated seismic
records in the time domain or frequency domain. Nevertheless,
amplitude attenuation and phase dispersion associated with ane-
lasticity occur during the wave propagation, so it is more physi-
cally consistent to mitigate these effects in prestack depth
migration (Zhang et al., 2010; Zhu et al., 2014). The second cat-
egory of compensation schemes are performed during seismic
propagation, which contains Q-compensated one-way wave
equation migration (Dai and West, 1994; Mittet et al., 1995; Wang
and Guo, 2004; Mittet, 2007; Zhang et al., 2012), Q-compensated
reverse time migration (Q-RTM; Zhang et al., 2010; Zhu et al.,
2014; Guo et al., 2016; Li et al., 2016b; Sun et al., 2016; Wang
et al., 2017a), and Q-compensated Gaussian beam migration
(Bai et al., 2016a, 2016b).
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In this paper, we focus on Q-RTM using viscoacoustic-wave
equation with decoupled fractional Laplacians (DFL), which is first
developed by Treeby and Cox (2010) based on power-law absorp-
tion and dispersion. This equation has been successfully applied
into photoacoustic tomography in medicine (Treeby et al., 2010;
Huang et al., 2012). In geophysics, frequency-dependent absorption
and dispersion are typically characterized by the constant-Q model
(McDonal et al., 1958; Kjartansson, 1979; Carcione et al., 1988),
which exhibits a mathematically concise dispersion relation featur-
ing Q exactly independent of frequency. Zhu and Harris (2014) ex-
tend DFLs to the constant-Q wave equation. This equation is
attractive forQ-RTM partly due to its flexibility for separately com-
pensating absorption and correcting dispersion. Zhu et al. (2014)
and Zhu (2014) explain that reversing the sign of the memory var-
iable term of the standard linear solid (SLS) model will not fully
compensate for phase dispersion. Guo and Mcmechan (2015)
and Guo et al. (2016) further verify the phase dislocation existing
in coupled Q-RTM by numerically comparing Q-RTM based on
coupled SLS equation with Q-RTM based on the decoupled con-
stant-Q equation. In addition, viscoacoustic-wave equation with
DFL relieves memory burden resulted from the temporal nonlocal-
ity of fractional time derivatives (Carcione et al., 2002; Carcione,
2008; Wang et al., 2015) because DFL is nonlocal in space rather
than in time, and it can be implemented efficiently by Fourier pseu-
dospectral method (PSM) (Carcione, 2010; Sun et al., 2014; Zhu
and Carcione, 2014; Chen et al., 2016).
As proposed by Treeby et al. (2010) and Zhu et al. (2014), at-

tenuation compensation based on viscoacoustic-wave equation with
DFLs can be easily achieved by reversing the absorption propor-
tionality coefficient in sign but leaving the equivalent dispersion
parameter unchanged. However, such an artificial compensation
is prone to boost the ambient noise coming from high-frequency
noise in seismic data or the machine errors relative to working pre-
cision (Wang, 2009; Yang et al., 2016b). Because Green’s function
can help to understand the numerical performance of the wave equa-
tion (Kelly et al., 2008; Treeby and Cox, 2011; Wang et al., 2017c),
we derive k-space Green’s functions for constant-Q wave equation
and its compensated equation. The time propagator of Green’s func-
tion deduced from the compensated equation is exponential diver-
gent at high wavenumber, and thus makes the propagation-based
compensation an ill-posed problem, which theoretically explains
the numerical instability existing in Q-RTM.
Now that we have figured out the essential reason resulting in

numerical instability during attenuation compensation, reasonable
stabilization needs to be incorporated either in the frequency or
wavenumber domain (Ammari et al., 2013; Kalimeris and Scherzer,
2013). Because the constant-Q wave equation with DFLs is simu-
lated by PSM in this paper, it is natural to conduct stabilization
in the wavenumber domain rather than in the frequency domain.
Conventionally, high-frequency ambient noise is suppressed by a
low-pass Tukey filter with its cut-off frequency identified by the
noise level of measured data (Treeby et al., 2010; Zhu et al.,
2014; Li et al., 2016b). However, conventional time-invariant filter-
ing fails to adapt with spatially varying Q and compensation depth
(traveltime). Treeby (2013) applies a time-variant frequency domain
Tukey window for regularizing compensated photoacoustic tomog-
raphy, whose cut-off frequency is chosen according to the local
time-frequency distribution of the recorded signals. Unlike conven-
tional low-pass filtering acting as a damage controller to suppress

the noise caused by attenuation compensation, the stabilization
scheme attempts to find a stable operator for attenuation compen-
sation (Wang and Guo, 2004). Wang and Guo (2004) propose a
robust stabilized approach for inverse-Q filtered migration, in which
the amplitude-compensation operator is defined by introducing a
stabilization factor. In this paper, we develop an adaptive stabiliza-
tion for Q-RTM, in which the stabilization factor can be explicitly
identified by the specified gain limit according to an empirical for-
mula (Wang, 2006). Compensation with adaptive stabilization ex-
hibits superior properties of time variance and Q dependence over
conventional low-pass filtering.
This paper is organized as follows: We first describe the meth-

odology of Q-RTM in the framework of constant-Q wave equation
with DFLs. Next, we analytically derive k-space Green’s functions
for constant-Q wave equation and its compensated equation. Based
on the exponentially divergent time propagator of Green’s function,
an adaptive stabilization scheme is therefore developed forQ-RTM.
Following that, we investigate the compensation and stabilization
effects of our proposed scheme by adopting control variable method
and further compare them with those of conventional low-pass fil-
tering. We demonstrate the stability and feasibility of Q-RTM with
adaptive stabilization using several synthetic examples with differ-
ent levels of complexity. Finally, we conduct a discussion and draw
some conclusions.

Q-RTM USING THE CONSTANT-Q WAVE
EQUATION

General principle of Q-RTM

We first introduce the general principle of Q-RTM in the frame-
work of constant-Q wave equation with DFLs, which is proposed
by Zhu and Harris (2014) as follows:

8<
:

1
c2ðxÞ

∂2p
∂t2 ðx;tÞ−ηðxÞð−∇2ÞγðxÞþ1pðx;tÞ−τðxÞ ∂∂tð−∇2ÞγðxÞþ1∕2pðx;tÞ¼δðx−xsÞfðtÞ;

pðx;tÞ¼∂p
∂t ðx;tÞ¼0;x∈Ω; t<0;

(1)

where Ω is a bounded domain in d-dimensional space Rd, xs denotes
the source position, and fðtÞ is the point source signature enforced at xs.
The dimensionless parameter γðxÞ¼ arctanð1∕πQðxÞÞ ranges within
(0, 1/2), and c2ðxÞ ¼ c20 cos

2ðπγðxÞ∕2Þ, where c0ðxÞ is the velocity
model defined at the reference frequency ω0. The proportionality co-
efficients of two fractional Laplacians, separately stand for dispersion
and absorption, are given by ηðxÞ¼−c2γðxÞ0 ðxÞω−2γðxÞ

0 cosðπγðxÞÞ and
τðxÞ¼−c2γðxÞ−10 ðxÞω−2γðxÞ

0 sinðπγðxÞÞ.
Equation 1 seems to be attractive for Q-RTM owing to its flex-

ibility for separately compensating amplitude loss and correcting
phase distortion. Treeby et al. (2010) and Zhu et al. (2014) state
that attenuation compensation based on this equation can be
achieved by reversing the absorption proportionality coefficient
in sign but leaving the equivalent dispersion parameter unchanged.
Zhu et al. (2014) implement Q-RTM applying the zero-lag cross-
correlation imaging condition:

IðxÞ ¼
Z

T

0

psðx; tÞprðx; tÞdt; (2)

where T denotes the maximal extrapolation time, the source wave-
field psðx; tÞ and receiver wavefield prðx; tÞ are compensated

S16 Wang et al.
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simultaneously.Q-compensated source wavefield psðx; tÞ is the sol-
ution of the following compensated equation:

(
1

c2ðxÞ
∂2ps
∂t2 ðx;tÞ−ηðxÞð−∇2ÞγðxÞþ1psðx;tÞþτðxÞ ∂∂tð−∇2ÞγðxÞþ1∕2psðx;tÞ¼δðx−xsÞfðtÞ;

psðx;tÞ¼∂ps
∂t ðx;tÞ¼0;x∈Ω; t<0:

(3)

Similarly, Q-compensated receiver wavefield prðx; tÞ satisfies the
following compensated equation:

(
1

c2ðxÞ
∂2pr
∂t2 ðx; tÞ−ηðxÞð−∇2ÞγðxÞþ1prðx; tÞþ τðxÞ ∂

∂t ð−∇2ÞγðxÞþ1∕2prðx; tÞ¼ δðx−xrÞgðx;T− tÞ;
gðx; tÞ¼pðx; tÞ; x∈ xr; t∈ ½0;T�;

(4)

where xr denotes the receiver positions and gðx; tÞ stands for the
recorded data, which are reversed in time and enforced as the
Dirichlet boundary condition at the receivers. However, amplitude
compensation in equations 3 and 4 is a nonstationary process with
energy exponentially amplified over the traveltime, which indeed
boosts high-frequency ambient noise and even results in numerical
instability. In the next section, we will develop a novel stabilization
scheme for Q-RTM, thereby generating higher resolution and
higher fidelity images.

Numerical simulation for the constant-Q wave equa-
tion with DFLs

As we can see from equation 1, the orders of fractional Lapla-
cians are spatially varying, and they are difficult to incorporate into
PSM. Zhu and Harris (2014) adopt the average value of the spatially
varying orders for numerical simulation. The average scheme is
only reasonable for smoothly heterogeneous Q models, but it is
unsuitable for relatively sharp Q contrasts. Chen et al. (2016) de-
velop two efficient fast Fourier transform (FFT)-based modeling
schemes for constant-Q wave equation with DFLs. Both of these
two schemes can efficiently cope with the spatial variable-order
fractional Laplacians. In this paper, we use the first scheme pro-
posed by Chen et al. (2016) to numerically simulate constant-Q
wave equation with DFLs, which adopts the weighted sum of
two constant-order fractional Laplacians to approximate the spatial
variable-order fractional Laplacian.
First, we adopt the generalized Fourier PSM (Carcione, 2010) to

define the wavenumber response of the fractional Laplacians, e.g.,

ð−∇2ÞγðxÞþ1pðx; tÞ ¼ F−1fjkj2γðxÞþ2F ½p�ðk; tÞg; (5)

where F and F−1 denote the forward and inverse Fourier trans-
forms, respectively, and jkj is the norm of the complex wavenumber
vector. Using the generalized Fourier PSM, we transform equation 1
into the wavenumber domain

1

c2ðxÞ
∂2p
∂t2

ðk;tÞ−ηðxÞjkj2γðxÞþ2pðk;tÞ−τðxÞ ∂
∂t
jkj2γðxÞþ1pðk;tÞ

¼δðx−xsÞfðtÞ: (6)

Using the first approximation scheme proposed by Chen et al.
(2016), we can rewrite the wavenumber responses of two fractional
Laplacians in equation 6 as (refer to equation 9 in Chen et al., 2016)

ηðxÞjkj2γðxÞþ2

≈ λðxÞ cosðπγðxÞÞ
��

1 −
2γðxÞ
ε

�
jkj2 þ 2γðxÞ

ε

1

kεd
jkj2þε

�
(7)

and

τðxÞjkj2γðxÞþ1

≈λðxÞsinðπγðxÞÞc−10 ðxÞ
��

1−
2γðxÞ
ε

�
jkjþ2γðxÞ

ε

1

kεd
jkj1þε

�
;

(8)

where λðxÞ ¼ ðωd∕ω0ÞγðxÞ, ωd ¼ 2πfd denotes the dominant angu-
lar frequency, fd denotes the dominant frequency, and kd ¼ ωd∕c0
represents the dominant wavenumber. The parameter ε is intro-
duced to guarantee ðjkj∕kdÞε sufficiently close to one; here, we
choose ε ¼ 1∕8. From equations 7 and 8, we can find that spatially
varying fractional Laplacians have been simplified into the
weighted sum of two constant-order fractional Laplacians, which
are easy to solve by PSM.

ADAPTIVE STABILIZATION FOR Q-RTM

Mathematically speaking, equations 3 and 4 are severely
ill-posed due to the presence of the compensating term
þτ∂tð−∇2Þγþ1∕2pðx; tÞ. To figure out exactly how the numerical
instability arises and to lay a foundation for well-directed stabiliza-
tion, we analytically derive k-space Green’s functions for the con-
stant-Q wave equation and its compensated equation. Because the
form of Fourier kernel will affect the sign of temporal and spatial
derivation (Holm and Nsholm, 2014), in this paper, we denote the
space-time Fourier transform of a plane wave in a homogeneous
attenuating medium as

F ½p�ðk;ωÞ ¼
Z

∞

−∞

Z
Rd

pðx; tÞe−iðωt−kxÞdxdt; (9)

and the corresponding inverse Fourier transform as

F−1½p�ðx; tÞ ¼ 1

ð2πÞd
Z

∞

−∞

Z
Cd

pðk;ωÞeiðωt−kxÞdkdω; (10)

where Rd and Cd represent the d-dimensional real space and com-
plex space, respectively, ω is the angular frequency, and k is the
complex wavenumber vector.

The k-space Green’s function

Assuming wave propagation in a homogeneous medium, we de-
rive a k-space Green’s function of equation 1 by enforcing a point
source at time t ¼ t0 and at the location x ¼ xs. The time-space
Green’s function Gðx; tÞ satisfies
�

1
c2

∂2G
∂t2 ðx; tÞ− ηð−∇2Þγþ1Gðx; tÞ − τ ∂

∂t ð−∇2Þγþ1∕2Gðx; tÞ ¼ −δðx− xsÞδðt− t0Þ;
Gðx; tÞ ¼ ∂G

∂t ðx; tÞ ¼ 0; x ∈ Ω; t < t0:

(11)

Application the space-time Fourier transform (as shown in equa-
tion 9) to equation 11 yields frequency-wavenumber harmonic

Adaptive stabilization for Q-RTM S17
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Green’s function Gðk;ωÞ, which is the solution of the following
Helmholtz equation:�
ω2

c2
þ ηjkj2γþ2 þ iωτjkj2γþ1

�
Gðk;ωÞ ¼ 1

ð2πÞdþ1
e−iωt0eikxs :

(12)

Solving for frequency-wavenumber harmonic Green’s function
Gðk;ωÞ and then applying dþ 1-dimensional inverse Fourier trans-
form (as shown in equation 10), we have

Gðx; tÞ ¼ c2

ð2πÞdþ1

Z
∞

−∞

Z
Cd

hðk;ωÞdkdω; (13)

where the integral kernel function is

hðk;ωÞ ¼ eiωðt−t0Þe−ikðx−xsÞ

ω2 þ ηjkj2γþ2c2 þ iωτjkj2γþ1c2
: (14)

The two singularities of this integral kernel function hðk;ωÞ can be
obtained by solving ω for the following equation:

ω2

c2
þ ηjkj2γþ2 þ iωτjkj2γþ1 ¼ 0: (15)

This equation is also known as the dispersion relation of the de-
coupled constant-Q wave equation (Sun et al., 2014). The solutions
of equation 15 are given by

ζ1;2ðkÞ ¼ �ξ1ðkÞ þ iξ2ðkÞ; (16)

where ξ1ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ2c4jkj4γþ2 − 4ηc2jkj2γþ2

p
∕2 and ξ2ðkÞ ¼

−τc2jkj2γþ1∕2 are the absolute real part and imaginary part of
the solution, respectively. According to Cauchy’s residue theorem,
we deduce the analytical integration of hðk;ωÞ with respect to ω
(the detailed deduction is given in Appendix A),

Z
∞

−∞
hðk;ωÞdðωÞ ¼ 2π

sinðξ1ðkÞtÞe−ξ2ðkÞt
ξ1ðkÞ

: (17)

Therefore, this Green’s function can be further expressed as

Gðx; tÞ ¼ c2

ð2πÞd
Z
Cd

Γattðk; tÞdk; (18)

where the attenuated time propagator Γattðk; tÞ is given by

Γattðk; tÞ ¼
sinðξ1ðkÞtÞe−ξ2ðkÞt

ξ1ðkÞ
: (19)

Similarly, Green’s function for compensated equations 3 and 4 can
be derived by reversing the absorption-related term τ in sign but
leaving the other term η unchanged. We slightly modify Green’s
function Gðx; tÞ to yield

Gðx; tÞ ¼ c2

ð2πÞd
Z
Cd

Γcompðk; tÞdk; (20)

where the compensated time propagator Γcompðk; tÞ is

Γcompðk; tÞ ¼
sinðξ1ðkÞtÞeξ2ðkÞt

ξ1ðkÞ
: (21)

For lossless media, as Q → ∞; γ → 0, so η → −1 and τ → 0, thus
ξ1 ¼ c0jkj; ξ2 ¼ 0. The compensated time propagator Γcompðk; tÞ is
identical to the attenuated time propagator Γattðk; tÞ in this situation.
Here, we denote the acoustic time propagator as Γacoðk; tÞ, and
hence we have

Γacoðk; tÞ ¼ Γcompðk; tÞ ¼ Γattðk; tÞ ¼
sinðc0jkjtÞ

c0jkj
; (22)

which further verifies that full acoustic/elastic medium can be con-
sidered as a time-invariant system. However, equations 19 and 21
further demonstrate that the time propagator of viscoacoustic-wave
equation is no longer reversible due to the presence of the exponen-
tial terms e−ξ2ðkÞt and eξ2ðkÞt, where

ξ2ðkÞ ¼
1

2
c2γ−10 ω−2γ

0 sinðπγÞc2jkj2γþ1 > 0; γ ∈
�
0;
1

2

�
:

(23)

According to equation 23, we can see clearly that the attenuated
time propagator Γattðk; tÞ is convergent over the propagation time,
whereas the compensated time propagator Γcompðk; tÞ is divergent at
the high-wavenumber end, which results in numerical instability
during compensation. That is to say, attenuating media can be
considered as a time-variant system with seismic wave energy ex-
ponentially decreasing, contrarily, attenuation compensation is a
nonstationary process with energy exponentially amplified over
the propagation time. Furthermore, the exponentially decreased
or increased speed is closely linked to the magnitude of wavenum-
ber jkj, which suggests that the high-wavenumber components are
more vulnerable to be absorbed or amplified.
For a more intuitive understanding about the k-space Green’s

functions for constant-Q wave equation and its compensated equa-
tion, we further display the graphical representation of the attenu-
ated and compensated time propagators. Here, we consider a 2D
homogeneous model with Q ¼ 50. Figure 1 displays the acoustic
time propagator, attenuated time propagator, and compensated time
propagator with the maximum traveltime of 1.0 s, respectively.
Compared with the acoustic time propagator, the attenuated time
propagator in Figure 1b exhibits weaker amplitude at a longer time,
especially for high-wavenumber components; on the contrary, the
compensated time propagator seems to be boosted at the high-wave-
number end, as shown in Figure 1c. To have a clear observation
about the numerical instability resulting from such an exponentially
amplified propagator, we further draw the compensated time propa-
gator with a longer traveltime of 2.0 s. As shown in Figure 1d, high-
wavenumber oscillations become increasingly intense over time,
which eventually leads to numerical instability. Wang (2009) points
out that the ambient noise generally comes from high-frequency
noise in seismic data and the machine errors relative to working
precision. Such an exponential propagator certainly boosts the
ambient noise. Thus, stabilization in the spatial frequency domain
is indispensable for eliminating the high-frequency oscillations.

S18 Wang et al.
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In the following section, we will propose a novel stabilization
scheme for Q-RTM.

Adaptive stabilization based on the k-space Green’s
function

Wang (2006) proposes a stabilized inverse-Q filtering for seismic
resolution enhancement by using an amplitude-compensated oper-
ator with stabilization. Stabilized amplitude-compensated operator
in the inverse problem can be expressed as (Wang, 2002; Irving and
Knight, 2003; Berkhout, 2012)

Λðτ;ωÞ ¼ βðτ;ωÞ
β2ðτ;ωÞ þ σ2

; (24)

where βðτ;ωÞ is an amplitude-attenuated operator and σ2 is the sta-
bilization factor. The stabilization exhibits inherent adaptability,
compared with conventional low-pass filtering, by adaptively limit-
ing the compensation of a given high-frequency wave component,
which has been attenuated to a level below the ambient noise. In this
paper, we propose a similar adaptive stabilization for Q-RTM. Ac-
cording to equations 21 and 23, we define the amplitude-attenuated
operator βðk; tÞ as

βðk; tÞ ¼ e−ξ2ðkÞt ¼ e−
1
2
c2γ−1
0

ω−2γ
0

sinðπγÞc2jkj2γþ1t (25)

and the amplitude-compensated operator as

Λðk; tÞ ¼ β−1ðk; tÞ ¼ eξ2ðkÞt: (26)

However, such an exponential compensation operator suffers from
numerical instability. Then, the amplitude-compensated operator
with adaptive stabilization can be defined as

Λðk; tÞ ¼ βðk; tÞ
β2ðk; tÞ þ σ2

¼ eξ2ðkÞt

1þ σ2e2ξ2ðkÞt
: (27)

In fact, the compensation operator eξ2ðkÞt has been embodied in
equations 3 and 4 by reversing the absorption proportionality
coefficient in sign; therefore, we merely need to modify theQ-RTM
scheme by introducing a stabilization operator given as

Sðk; tÞ ¼ 1

1þ σ2e2ξ2ðkÞt
: (28)

Wang and Guo (2004) propose a stabilized approach for inverse-Q
filtered migration, and point out that one must evaluate the earth
attenuation effect accumulated from the recording surface down
to the current depth, not just the effect within the current extrapo-
lation step. Accordingly, the attenuation and compensation effects
in Q-RTM are considered to be accumulated from the starting time
to the current time, and thus we need to perform stabilization at
every time step Δt. Now, we define a stabilization coefficient
sðk; lΔtÞ as

Yn
l¼1

sðk; lΔtÞ ¼ Sðk; nΔtÞ: (29)

This coefficient is considered as a supersedent to the exponentially
divergent time propagator, and it will be used forQ-RTM within the
lth time-step extrapolation. For the first step l ¼ 1, the stabilization
coefficient is

sðk;ΔtÞ ¼ Sðk;ΔtÞ ¼ 1

1þ σ2e2ξ2ðkÞΔt
; (30)

and for the lth time step, it is given by

sðk; lΔtÞ ¼ Sðk; lΔtÞ
Sðk; ðl − 1ÞΔtÞ ¼

1þ σ2e2ξ2ðkÞðl−1ÞΔt

1þ σ2e2ξ2ðkÞlΔt
;

l ¼ 2; 3; : : : ; n: (31)

To illustrate inherent adaptability of such a stabilization scheme,
we numerically compare the spatial frequency-dependent compen-
sation curves Λðk; tÞ at different traveltime t and with different
quality factor Q. We assume that reference velocity of the homo-
geneous medium is 3000 m/s at a specific angular frequency
ω0 ¼ 20πfd (Carcione, 2008; Sun et al., 2014), where fd ¼ 30 Hz

denotes the dominant frequency of the Ricker wavelet. Figure 2a
shows three gain curves at t ¼ 0.5, 1.0, and 1.5 s, respectively, with
Q ¼ 30 and σ2 ¼ 0.1%. These curves have the same peak ampli-
tude value but various frequency band range, more specifically, the
effective compensation range shifts to low frequency and becomes
more and more narrow over time. As shown in Figure 2b, similarly,
Q-values also influence the spatial frequency distribution of the
compensation curves, which moves toward low frequency as the

a) b)

c) d)

Figure 1. Time propagators of k-space Green’s functions for:
(a) acoustic-wave equation, (b) constant-Q wave equation, (c) com-
pensated constant-Q wave equation with maximum traveltime of
1.0 s, and (d) compensated constant-Q wave equation with maxi-
mum traveltime of 2.0 s. We clip the same amplitude value for all
four figures. Note that high-wavenumber instability can be observed
from panel (d).
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Q-value decreases (Q ¼ 120, 60, and 30). In general, the rules of
stabilized compensation curves varying with traveltime t and qual-
ity factorQ tally with our intuitive understanding. Considering seis-
mic wave propagation in high-attenuation media with smaller Q,
when it travels a longer time, its amplitude undergoes more inten-
sive attenuation, especially for high-frequency components; accord-
ingly,Q-compensation trends to drastically amplify such attenuated
signal even ambient noise, whereas amplitude-compensated opera-
tor with stabilization can adaptively avoid boosting the ambient
noise by high-frequency suppression. Thus, it indicates that this sta-
bilized compensation is a nonstationary and adaptive process.

Adaptive stabilization versus low-pass filtering

Typically, numerical instability resulting from boosted high-fre-
quency noise can be modestly relieved by low-pass filtering in the
frequency domain (Wang, 2009) or in the wavenumber domain
(Treeby et al., 2010; Zhu et al., 2014). Wang (2009) points out that
a desirable low-pass filter should be time variant and Q dependent.
However, it is impractical to design such an adaptive filter. In fact,
this intelligent property is naturally built into our proposed stabili-
zation scheme. As we have seen, the amplitude-compensated oper-
ator with stabilization can adaptively vary with traveltime t and
quality factor Q; thus, it can avoid boosting ambient noise. What
we should pay attention to is that the stabilization factor σ2 as a
customized parameter greatly influences the fidelity and stability
of compensation. Furthermore, this factor is physically linked to
the signal-to-noise ratio (S/N) of the seismic data. In this section,
we will formulate an empirical algorithm for identifying the stabi-
lization factor and then compare it with conventional low-pass
filtering.
Wang (2006) proposes an empirical formula for estimating the

stabilization factor σ2 from a specific gain limit Glim, where Glim

corresponds to maximal amplitude gain in decibels, i.e.,

Glim ≔ 20 log10

�
max

∀k∈Cd;∀ t>0
Sðk; tÞ

�
: (32)

Similarly, we can formulate an explicit relationship between the sta-
bilization factor σ2 and user-specified gain limit Glim by linear fit-
ting. As shown in Figure 3a, where Q ¼ 30 and t ¼ 1.5 s are
assumed, the stabilized amplitude-compensated operators with a
series of stabilization factors σ2 (from 10% to 0.0001%) have
distinct compensation ranges. This observation suggests that the
stabilization factor σ2 directly determines the balance between
the fidelity and stability of compensation. The smaller is the stabi-
lization factor σ2, the more broadly it will compensate. Then, we
plot the peak of each gain curve in decibels (Figure 3b), it shows
that the gain limit can be given as

Glim ¼ −4.343 ln σ2 − 6.021: (33)

Thus, we can identify the stabilization factor σ2 from a specific gain
limit Glim by following an empirical formula:

σ2 ¼ e−0.23Glim−1.39: (34)

Stabilization by low-pass filtering is equivalent to applying a
high-cut filter to the nonstabilized compensation operator, it can
be symbolically represented as
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Figure 2. The stabilized compensation coefficients Λðk; tÞ varying
with (a) different traveltimes t ¼ 0.5, 1.0, and 1.5 s (Q ¼ 30 and
σ2 ¼ 0.1%), and (b) different quality factors Q ¼ 120, 60, and
30 (t ¼ 1.5 and σ2 ¼ 0.1%).
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Figure 3. (a) The stabilized compensation curves Λðk; tÞ (in deci-
bels) varying with a series of stabilization factors σ2 (from 10% to
0.0001%), and (b) linear fitting for gain limit Glim varying with
ln σ2.
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Πðk; tÞ ¼ A½Λ�ðk; tÞ ¼ Λjkj≤ρðk; tÞ; (35)

whereA is a low-pass filtering operator and parameter ρ denotes the
cut-off spatial frequency of the filter. Here, we choose a Tukey win-
dow for suppressing the amplification of high-frequency noise
during attenuation compensation. The cut-off wavenumber of the
low-pass filter is usually identified by estimating the noise level
from the power spectrum of the measured data (Zhu et al.,
2014). Thus, the cursory truncation results in the filter to be time
invariant and Q independent. The Tukey windows with different
taper ratios α and cut-off parameters ρ are shown in Figure 4a,
and their spectrum responses are shown in Figure 4b. As we can
see from Figure 4b, the more sharply the window edge changes,
the more intensely the side lobe of spectrum oscillates. It means
that sharply truncating the high-frequency components of the com-
pensated data may result in the Gibbs ringing artifacts, which man-
ifests itself as spurious ringing around sharp edges (Ammari, 2008;
Sun and Zhu, 2015). A feasible approach to reduce the Gibbs ring-
ing artifact is to filter the compensated wavefield by a smoothed
window.
For a fair comparison between the compensation curves Λðk; tÞ

regularized by adaptive stabilization and the compensation curves
Πðk; tÞ trapped by Tukey windows, we consider the Pierre Shale
model that exhibits homogeneous attenuating property with
Q ¼ 30, and the noise level of the measured data is −60 dB.
We set the gain limit Glim ¼ 40 dB for stabilization, which corre-
sponds to stabilization factor σ2 ¼ 0.0025%. Figure 5 displays gain
curves using two kinds of stabilized compensation schemes at dif-
ferent traveltimes t ¼ 0.5, 1.0, and 1.5 s. Figure 5a shows that the
peak gains of compensation curves with stabilization are not af-
fected by traveltime, which maintains a fixed gain limit Glim of
40 dB. As we have claimed in the previous section that the effective
compensation range of Λðk; tÞ shifts to low-frequency end over
time. Figure 5b displays the compensation operators Πðk; tÞ trapped
by Tukey windows with the cut-off wavenumber ρ ¼ 0.14 m−1.
The cut-off parameter is chosen for maintaining the gain limit
Glim ≤ 40 dB within 1.0 s, and it corresponds to the cut-off fre-
quency of 80 Hz. Unlike the gain curve regularized by our proposed
stabilization scheme, the gain curve trapped by low-pass filter has
different gain limit Glim but maintains a fixed passband. It indicates
that our proposed adaptive stabilization can be considered as a time-
varying filter.
As is shown in Figure 1d, the high-wavenumber oscillatory be-

comes increasingly intense over time, which eventually leads to
numerical instability. Here, we apply the aforementioned stabiliza-
tion methods into compensated time propagator, Figure 6 shows the
compensated time propagators stabilized by low-pass filtering and
our proposed scheme, respectively. We set σ2 ¼ 2.5 × 10−7 for our
proposed method, and cut-off wavenumber ρ ¼ 0.16 m−1 for the
high-cut filter. From Figure 6a and 6b, we can conclude that our
proposed stabilization scheme preserves more high-wavenumber
components at a short propagation time, and it prevents the propa-
gator from being unstable by suppressing the high-wavenumber
components at a larger time; whereas low-pass filtering may result
in a high-wavenumber loss in a short period of time and a relatively
high-wavenumber divergence over a long period of time.
To further verify our conclusion, we compare wavenumber traces

extracted from the compensated time propagators in Figure 6 with
fixed kz ¼ 0.2 m−1 at t ¼ 0.5, 1.0, and 1.5 s, respectively. As shown

in Figure 7, the trace of the compensated time propagator stabilized
by our proposed method (the red line) can well match with the com-
pensated trace (black line) within the full-wavenumber band at a short
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Figure 4. Tukey windows and their power spectra with different
taper ratios α and cut-off parameters ρ: (a) Tukey windows and
(b) their power spectra.
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eltimes t ¼ 0.5, 1.0, and 1.5 s, which is stabilized by (a) adaptive
stabilization (σ2 ¼ 0.0025%) and (b) low-pass Tukey filtering
(ρ ¼ 0.14 m−1).
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propagation time (Figure 7a), whereas that of the low-pass filtered
propagator (the blue line) suffers from high-wavenumber loss. After
a relatively long traveltime, the compensated time propagator tends to
be boosted at the high-wavenumber end. In such a situation, our sta-
bilization scheme still maintains a stable propagator; however, it is
not the case for low-pass filtering. Furthermore, Figure 8 compares
several time traces extracted from the compensated time propagators
in Figure 6 at low, medium, and high wavenumbers, respectively,
from which we can draw a similar conclusion.
In brief, we can make two observations from Figures 6–8. First,

both of these two stabilized methods mostly overcome the numeri-
cal instability by recovering low- and medium-frequency seismic
signal and suppressing the high-frequency artifact. Second, com-
pensation with adaptive stabilization exhibits superior property
of time variance and Q dependence, as the stabilized gain curve
is automatically adjusted with traveltime t and quality factor Q.
Therefore, it can intelligently avoid boosting the ambient noise,

a) b)

Figure 6. The compensated time propagators stabilized by (a) adap-
tive stabilization (σ2 ¼ 2.5 × 10−7) and (b) low-pass Tukey filtering
(ρ ¼ 0.16 m−1). We clip the same amplitude value for these two
figures.

a)

b)

c)

Figure 7. Wavenumber traces extracted from compensated time
propagators in Figure 6 with fixed kz ¼ 0.2 m−1 at: (a) t ¼ 0.5,
(b) 1.0, and (c) 1.5 s, where the solid black line corresponds to com-
pensated trace without stabilization, the red line corresponds to
adaptively stabilized trace, and the blue line corresponds to low-
pass filtered trace.

a)

b)

c)

Figure 8. Time traces extracted from compensated time propaga-
tors in Figure 6 at low, medium, and high wavenumbers:
(a) ρ ¼ 0.05, (b) 0.15, and (c) 0.20 m−1, where the solid black line
corresponds to a compensated trace without stabilization, the red
line corresponds to an adaptively stabilized trace, and the blue line
corresponds to a low-pass filtered trace.
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especially for the noisy data. More specifically, in a short period of
propagation time, both methods can recover low- and medium-
wavenumber components; nevertheless, our adaptive stabilization
tends to compensate more high-frequency components than con-
ventional low-pass filtering method. In a long period of propagation
time, the compensation range of both methods move toward low
wavenumber, compensation with stabilization can better suppress
medium-frequency components. In the next section, we will dem-
onstrate the superiority of adaptive stabilization over low-pass filter-
ing in terms of Q-RTM quality.

Q-RTM EXAMPLES OF SYNTHETIC DATA

As we have seen in the previous section, Q-RTM using our pro-
posed adaptive stabilization scheme can theoretically recover as
many high-frequency components of shallow structures as possible,
and at the same time maintain relatively stable compensation for deep
structures. To numerically demonstrate the superiority of adaptive
stabilization over conventional low-pass filtering, we perform
Q-RTM on two synthetic models with the high-attenuation gas-bear-
ing area, respectively, stabilized by low-pass filtering and our pro-
posed method. Conventional RTM for such attenuating model
may cause insufficient illumination under the gas-bearing area. Fur-
thermore,Q-RTMwith noisy data is also considered for verifying the
antinoise performance of our proposed stabilization scheme.

Simple five-layer model

We consider Q-RTM for a simple five-layer model, whose veloc-
ity and Q models are, respectively, shown in Figure 9a and 9b.
A high-attenuation gas-bearing wedge is located at the third layer

of the model. The size of the model is 2 × 3 km with a grid spacing
of dx ¼ dz ¼ 10 m. There are 61 shots distributed laterally with the
shot interval ds ¼ 50 m; each of them is accompanied with 201
double-sided receivers. The source function is a Ricker wavelet with
a dominant frequency of fd ¼ 20 Hz. To identify a reasonable cut-
off frequency for conventional filtered Q-RTM and stabilization
factor for our proposed stabilized Q-RTM, we need to estimate
the noise level of the measured data (Zhu et al., 2014). Figure 10
shows synthetic shot gathers in an acoustic medium (Figure 9a) and
in a viscoacoustic medium (Figure 9b), respectively, we can observe
apparent amplitude decay in the viscoacoustic gather. Figure 11a
displays traces selected arbitrarily at the distance of 1000 m from
shot gathers in Figure 10; there is a slight phase dislocation between
these two traces. Their power spectra are shown in Figure 11b, from

a)

b)

Figure 9. (a) Velocity model and (b)Qmodel of a simple five-layer
model, which contains a high-attenuation gas-bearing wedge exhib-
iting an extreme attenuating property with Q ¼ 30.

a) b)

Figure 10. Synthetic shot gathers in the (a) acoustic and (b) viscoa-
coustic media shown in Figure 9.

0 0.4 0.8 1.2 1.6 2
−0.1

−0.05

0

0.05

0.1

Time (s)

A
m

pl
itu

de

Acoustic
Viscoacoustic

0 25 50 75 100 125 150
−120

−100

−80

−60

−40

−20

0

Cutoff frequency

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Acoustic
Viscoacoustic

a)

b)

Figure 11. (a) Synthetic traces selected arbitrarily at a distance of
1000 m from shot gathers in Figure 10 and (b) their power spectra.
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which we select a cut-off frequency of 75 Hz for the Tukey filter
(the blue circle marked in Figure 11b). Remarkably, the cut-off
frequency fc is calculated by multiplying the cut-off wavenumber
kc by the maximum velocity cmax of the simulated model (Zhu et al.,
2014). Accordingly, we adopt a gain limit Glim of 60 dB for our
proposed stabilized Q-RTM to maintain stable compensation,
which corresponds to a stabilization factor σ2 ¼ 2.5 × 10−7.
Figure 12a shows the migrated image as a reference using con-

ventional RTM from acoustic data; the imaging result of RTM
(Figure 12b) from viscoacoustic media without compensation ex-
hibits reduced amplitude and distorted phase compared with the
reference. The compensated images of Q-RTM stabilized by low-
pass filtering and the proposed scheme are shown in Figure 12c
and 12d, respectively. From these migrated images, we can reach
two conclusions. First, compared with the noncompensated image
in Figure 12b, the compensated images (Figure 12c and 12d), no
matter obtained by the filtered Q-RTM or stabilized Q-RTM, have
a clear improvement. Second, because Q-RTM with adaptive sta-
bilization exhibits the superior properties of time variance and Q
dependence, it can recover as many high-frequency components of
shallow structures as possible, and at the same time prevent the
ambient noise from being boosted. A more intuitive comparison
is made by extracting single traces from these migrated images.
Figure 13 shows the vertical, horizontal, and sloping profile ex-
tracted from the images in Figure 12. As shown in Figure 13a,
the trace extracted from the noncompensated image obtained from
viscoacoustic data using conventional RTM suffers from ampli-
tude attenuation and phase distortion compared with that from the
nonattenuated image. Another two profiles shown in Figure 13b
and 13c are picked along the first horizontal reflection and
the third incline reflection, where the compensated trace using
our proposed stabilization scheme matches the reference trace bet-
ter owing to its property of amplitude preserving and intelligent
adjustment of the compensation band, especially for shallow
reflections.

BP gas chimney model

To further demonstrate the stability and reliability of our pro-
posed stabilization scheme, we conduct Q-RTM on the BP gas
chimney model with clean data and noisy data, respectively.
Figure 14a and 14b shows its velocity and Q models (Zhu et al.,
2014), which contains a high-attenuation gas chimney exhibiting
an extreme attenuating property with Q ¼ 20. The model has
161 nodes with a sampling interval of dz ¼ 10 m in depth and
398 nodes with sampling interval of dx ¼ 10 m in the horizontal
direction. In the observation system, 80 sources are distributed
laterally with a shot interval ds ¼ 50 m, and each shot has 161 dou-
ble-sided receivers with a maximum offset of 0.8 km. The point
source is a Ricker wavelet with a dominant frequency fd ¼
30 Hz. The synthetic seismic data are modeled by the PSM with
time interval dt ¼ 0.001 s, and the records last 2 s.

Q-RTM with clean data

In this example, we first consider Q-RTM for BP gas chimney
model without any noise. In such an ideal situation, attenuation
compensation is still prone to generate high-frequency artifacts
and even to result in numerical instability because the ambient noise
coming from the machine errors relative to working precision
will be exponentially boosted (Wang, 2009). Therefore, reasonable
stabilization needs to be incorporated to obtain a higher resolution
and higher fidelity image. In this example, we conduct Q-RTM
using two different stabilization schemes: conventional low-pass
filtering with the cut-off frequency of 80 Hz (Zhu et al., 2014),
and adaptive stabilization with gain limit Glim ¼ 40 dB (corre-
sponding to σ2 ¼ 0.0025%).
Figure 15 shows several migrated images obtained using acoustic

RTM, viscoacoustic RTM without compensation, low-pass-filtered
Q-RTM, and adaptively stabilized Q-RTM, respectively. For these,
the acoustic imaging result shown in Figure 15a serves as a refer-
ence for comparison. Due to the presence of a high-attenuation gas

chimney, the imaging result of gas trap shown in
the blue frame in Figure 15b exhibits attenuated
amplitudes and blurred structures; besides, the
extreme attenuating area also gravely affects the
migration image of the anticlinal structure below
the gas trap, and the bulge located over the left
wing of the anticline shown in the green frame in
Figure 15b is almost invisible. Figure 15c and
15d shows compensated images using Q-RTM
stabilized by low-pass filtering and our proposed
scheme, respectively. Both of these two compen-
sated images exhibit clear anticlinal structure and
recovered amplitudes, whereas the image in Fig-
ure 15d presents better amplitude-preserving per-
formance compared to the image in Figure 15c.
Figure 16 compares migrated seismic traces

that are selected arbitrarily at three distances
of 1500, 2200, and 3200 m from the imaging re-
sults shown in Figure 15. The blue frames on
these traces display the contrast of shallow struc-
tures, whereas the green frames highlighting
deep structures are shown with a gain of 10.
The first trace is the reference migration result
without attenuation (Figure 15a). Trace 2 stands

a) b)

c) d)

Figure 12. Migrated images of the simple five-layer model using (a) conventional RTM
from acoustic data, (b) conventional RTM from viscoacoustic media without compen-
sation, (c) low-pass-filtered Q-RTM, and (d) adaptively stabilized Q-RTM.
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for the result of the noncompensated image (Figure 15b). Trace 3 is
selected from the image generated by low-pass-filtered Q-RTM
(Figure 15c), whose deep structures are still blurred because of
the limited compensation depth and frequency bands. The last trace
is the Q-RTM image regularized by our proposed stabilization
scheme (Figure 15d), which is comparable with the ideal situation
of pure acoustic media (trace 1). Figure 17 shows their amplitude
spectra, from which we can conclude that Q-RTM with adaptive
stabilization tends to recover the amplitude of reflected waves in
a broader frequency band compared with Q-RTM using low-pass
filtering. From Figure 17a–17c, we can note that the high-wave-
number components of seismic traces crossing the high-attenuation
gas chimney are not fully recovered by filteredQ-RTM or stabilized
Q-RTM. This phenomenon is consistent with our intuition that seis-
mic waves traveling through the high-attenuation gas chimney
undergo severer attenuation; thus, the attenuated high-wavenumber
components may suffer from more severe suppression during com-
pensation.

Q-RTM with noisy data

To facilitate the comparison between low-pass filtering and our
proposed stabilization scheme in terms of antinoise performance
and resolution enhancement, we further consider Q-RTM for noisy
data, in which we add 5% band-pass-filtered random noise to the
seismic records (Wang, 2006). Figure 18a shows synthesized re-
cords from the BP gas chimney model, and Figure 18b shows
the noisy data, which consist of the synthetic data and 5% band-
pass-filtered random noise. Because high-frequency random noise

is more vulnerable to being boosted during compensation, a lower
cut-off frequency for the Tukey filter and a lower gain limit Glim (or
bigger stabilization factor σ2) for stabilization should be selected to
overcome the numerical instability. Figure 19a shows a noise-free
trace and a noisy trace selected from shot 40 shown in Figure 18,
and Figure 19b shows their amplitude spectra. As shown in Fig-
ure 19b, the effective compensation band of the clean trace is within
75 Hz indicated by the blue circle, whereas that of the noisy trace is
within 140 Hz; thus, high-frequency components within 75–140 Hz
will be boosted during attenuation compensation. In this example,
three different cut-off frequencies ρ ¼ 60, 75, and 90 Hz are chosen
for filtered Q-RTM, and stabilization factors σ2 ¼ 0.25%, 0.025%
and 0.0025% (corresponding to Glim ¼ 20, 30, and 40 dB, respec-
tively) are adopted for our stabilized Q-RTM.
Figure 20a, 20c, and 20e shows the compensated migration im-

ages obtained by filtered Q-RTM corresponding to ρ ¼ 60, 75, and
90 Hz, respectively, and Figure 20b, 20d, and 20f displays those
obtained by stabilized Q-RTM corresponding to σ2 ¼ 0.25%,
0.025%, and 0.0025%. As we can see from Figure 20a, 20c, and
20e, the anticline under the high-attenuation gas chimney becomes
increasingly clearer with the increase of the cut-off frequency in
filtered Q-RTM, whereas the image of the gas chimney is flooded
by boosted medium- and high-frequency noise. A relatively low
cut-off frequency is therefore chosen to improve the imaging quality
of the gas trap at the expense of the under-compensated deep struc-
tures. As seen from Figure 20b, 20d, and 20f, the fidelity of the deep
structures is improved as the stabilization factors decrease; never-
theless, excessively reducing the stabilization factor results in
numerical instability during compensation. On the whole, the com-
pensation performance of Q-RTM for noisy data degrades slightly
against the noise-free case (Figure 15), adaptive stabilized Q-RTM
exhibits better antinoise performance and amplitude fidelity than
low-pass-filtered Q-RTM.
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Figure 13. Profiles extracted from the images in Figure 12: (a) ver-
tical profile at X ¼ 1500 m, (b) horizontal profile at Z ¼ 500 m,
and (c) sloping profile along the third horizon. The solid black line
corresponds to reference image, the green line corresponds to the
image without compensation, the blue line corresponds to the low-
pass filtered Q-RTM image, and the dashed red line corresponds to
the adaptively stabilized Q-RTM image.

a)

b)

Figure 14. (a) Velocity and (b) Q of the BP gas chimney model,
which contains a high-attenuation gas chimney exhibiting an ex-
treme attenuating property with Q ¼ 20.
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For a clearer comparison, we display magnified seismic images
in Figure 21 corresponding to Figures 15a and 20, in which we se-
lect three local reflections: reflection A is located at the gas-bearing
area, reflection B is the top interface of the anticline, and reflection
C is the bulge located over the right wing of the anticline. Compared
with the acoustic image in Figure 21g, the reflections shown in
Figure 21a and 21b are severely under-compensated because the
relatively low cut-off frequency and large stabilization factor are
chosen for regularizing Q-RTM. Figure 21c and 21d shows local

images obtained by Q-RTM with a moderate cut-off frequency
and stabilization factor. Compared with the images of conventional
filtered Q-RTM, our proposed Q-RTM tends to more fully recover
the reflection amplitudes and to maintain a higher S/N, particularly
the anticline structure beneath the gas chimney zone (reflection B).
We further select a relatively higher cut-off frequency of 90 Hz and
a smaller stabilization factor of 0.0025% for Q-RTM, Figure 21e
and 21f shows the over-compensated reflections in the gas chimney,
which are flooded by boosted artifacts resulting from amplitude

compensation, but comparatively speaking, the
adaptive stabilizedQ-RTM image seems to have
better amplitude preservation and higher quality
of continuity when we compare reflections A
and B in Figure 21e with those in Figure 21f.
Altogether, we can conclude that Q-RTM using
our proposed stabilization scheme tends to keep
a better balance between fidelity and stability
due to its superior property of time variance
and Q dependence.

DISCUSSION

Amplitude absorption and phase distortion
caused by the anelasticity of media are the two
main factors that affect structure imaging and hori-
zon interpretation in attenuating regions, and
they eventually degrade the quality of the migrated
images and the reliability of the subsequent inter-
pretation (Wang, 2009; Zhang et al., 2012; Zhu
et al., 2014). On the one hand, the dissipation

a) b)

c) d)

Figure 15. Migrated images obtained using (a) acoustic RTM, (b) viscoacoustic RTM
without compensation, (c) low-pass-filtered Q-RTM, and (d) adaptively stabilized
Q-RTM. The blue and green frames highlight migration results of the gas chimney
and the bulge, respectively.
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Figure 16. Migrated seismic traces selected arbitrarily at three distances of (a) 1500, (b) 2200, and (c) 3200 m from migration results shown in
Figure 15. Traces 1–4 correspond to the results of acoustic RTM, viscoacoustic RTM, and Q-RTM using low-pass filtering and adaptive
stabilization, respectively. The blue frames display the shallow structures, whereas the green frames highlighting the deep structures are shown
with a gain of 10.
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of seismic energy can sometimes weaken seismic waveforms, obscur-
ing seismic events, especially the deep structure beneath high-attenu-
ating zone; on the other hand, the accompanying phase distortion and
polarity diversification may result in dislocation of events, hindering

accurate seismic horizon calibration (Carcione, 2007; Wang, 2009).
There are more and more seismic data processing and imaging meth-
ods aiming at compensating for attenuation effects, increasing spatial
resolution of seismic images, and improving the fidelity of the reflec-
tion amplitude. The most commonly used methods include inverse-Q
filtering (Hargreaves and Calvert, 1991; Wang, 2002, 2006), inverse-Q
migration (Dai and West, 1994; Zhang et al., 2012), and the most re-
centQ-RTM (Zhang et al., 2010; Zhu et al., 2014; Guo et al., 2016; Li
et al., 2016b; Sun et al., 2016).
A common issue existing in the compensation approaches men-

tioned above is the numerical instability. It has been stated in the lit-
erature that direct amplitude compensation will inevitably result in
exponentially boosted high-frequency ambient noise (Wang, 2002;
Zhu et al., 2014; Sun and Zhu, 2015). In this paper, we have ana-
lytically proven that the compensated constant-Q equation is a
heavily ill-posed equation due to the presence of the compensating
term. Here, we intend to give a thorough discussion about the stability
and feasibility of several stabilization schemes forQ-RTM. The most
intuitive method is to apply a Tukey window to the amplitude com-
pensation operator in the wavenumber domain, which maintains the
fidelity of compensated images within the filter pass band and serves
as a time-invariant low-pass filter suppressing high-frequency noise
(Treeby et al., 2010; Zhu et al., 2014). Inspired by the fact that signal
loss manifests as a depth-dependent magnitude decrease and blurring
of features within the recorded data, Treeby (2013) proposes a regu-
larization scheme by using a time-variant window, in which the cut-
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Figure 17. Amplitude spectra corresponding to the migrated seis-
mic traces shown in Figure 16 at three distances of (a) 1500,
(b) 2200, and (c) 3200 m, where the black line stands for the am-
plitude spectrum of acoustic trace 1, the blue line stands for that of
attenuated trace 2, and the green and red lines stand for that of com-
pensated traces 3 and 4, respectively.

a) b)

c)

Figure 18. (a) Synthesized data from the BP gas chimney model,
(b) synthesized data added five band-pass filtered random noise,
and (c) band-pass filtered random noise. We clip the same amplitude
value for all three figures.
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off frequency is based on the local time-frequency distribution of the
recorded signals. Sun and Zhu (2015) propose a novel approach to
stabilize the attenuation compensation that aims at reformulating a
stable compensation operator without explicitly amplifying the wave
amplitude. This stable compensation can be achieved by a smooth
division between a phase-only wavefield and a viscoacoustic wave-
field. However, there are two main drawbacks of this method. First,
the computational cost of this method is approximately 1.5–2 times
higher than that of the conventional RTMs; second, such a method
avoids the instability caused by exponentially amplifying the attenu-
ated data, meanwhile bringing in another instability problem of
division by zero. Even though smooth division by shaping regulari-
zation is performed (Fomel, 2007; Chen et al., 2014, 2017; Xue et al.,
2015), it is hard to guarantee the fidelity of the result in a complex
structure region. An alternative attempt is to stabilize the amplitude
compensation by adding regularization terms (Zhang et al., 2010; Qu
et al., 2015), which requires careful control on the regularization
term. Besides, inversion-based compensation schemes have been
widely studied by many researchers (Blanch and Symes, 1995;
Ribodetti et al., 1995; Dutta and Schuster, 2014; Sun et al., 2016).
Ribodetti et al. (1995) develop an inversion scheme in the frequency
domain for recovering the three spatially dependent parameters of a
viscoacoustic medium. Later, they generalize this theory for visco-
elastic seismic imaging (Ribodetti and Virieux, 1998). Blanch and
Symes (1995) propose an efficient iterative viscoacoustic linearized
inversion strategy based on the SLS model. Recently, Dutta and
Schuster (2014) and Sun et al. (2016) propose Q-compensated
least-squares RTM (Q-LSRTM) based on the SLS viscoacoustic-
wave equation and constant-Q wave equation, respectively. They
claim that attenuation compensation in the framework of LSRTM
is always stable without making any modification or regularization

upon the adjoint wave equations during the back-
ward wavefield extrapolation. In this sense,
Q-LSRTM is a promising way for removing
the side effects of attenuation to seismic imaging.
In summary, the stabilization scheme proposed in
this paper can be treated as a nonstationary filter-
ing method that exhibits the superior property of
time variance and Q dependence over conven-
tional low-pass filtering.
Another issue that we should pay attention to

is the choice of stabilization parameter, which is
the key to maintain a successful and stable com-
pensation. As we all know, the stability of source
and receiver wavefield compensation is not only
determined by the physical properties of subsur-
face media (velocity and Q models) but also by
input data (source and seismic records). As a re-
sult, the cut-off wavenumber or the stabilization
factor inQ-RTM is physically linked to the noise
level of the source and seismic records. Further-
more, it is more reasonable to select distinct sta-
bilization parameters for source and receiver
wavefield extrapolation because the S/N of the
forward wavefield is typically much higher than
that of measured seismic records. However, con-
ventional low-pass filtering is somehow a rough
approach when compared with our proposed sta-
bilization scheme.
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Figure 19. (a) Synthetic traces selected arbitrarily at a distance of
2000 m from shot 40 of seismic records shown in Figure 18: The
black line corresponds to the clean data, and the red line to noisy
data. (b) Amplitude spectra corresponding to the synthetic traces
shown in Figure 19a.

a) b)

c) d)

e) f)

Figure 20. Migrated images from the noisy data with 5% random noise obtained using
low-pass-filtered Q-RTM with three different cut-off frequencies (a) ρ ¼ 60, (c) 75, and
(e) 90 Hz, and our proposed Q-RTM with three different stabilization factors
(b) σ2 ¼ 0.25%, (d) 0.025%, and (f) 0.0025%.

S28 Wang et al.

D
ow

nl
oa

de
d 

11
/2

8/
17

 to
 6

1.
50

.1
38

.1
58

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Although our proposed stabilization scheme exhibits the superior
properties of time-variance and Q-dependence over conventional
low-pass filtering, it is still a nonlocal operator acting on the wave-
number-domain wavefields and is independent of space locations.
As we can see from Figure 20, the boosted ambient noise caused by
amplitude compensation mainly distributes around the high-attenu-
ation gas chimney area, which indicates that a space-dependent sta-
bilization operator Λðk; x; tÞ might be the optimal choice. Such a
mixed-domain space-wavenumber operator can be formulated by
space-wavenumber analysis (Stockwell et al., 2006; Pai and Sun-
daresan, 2011), and further simulated using low-rank decomposi-
tion (Fomel et al., 2013; Song et al., 2013; Sun et al., 2016). An
alternative approach to establish the inherent relation between spa-
tial state and wavenumber-domain state is empirical-mode decom-
position (EMD) (Huang et al., 1998; Huang and Wu, 2008), by
which one can conduct stabilization in the space and wavenumber
domain simultaneously. The beauty of the EMD-based method is
that EMD is a local and fully adaptive method that can be used
to attenuate the highly oscillating spatial components (high-wave-
number components) without any input parameter. Once an appro-
priate spatiotemporal stabilization operator is proposed, it will be a
promising candidate for many adjoint-state-based compensation
methods (Plessix, 2006), including Q-RTM (Zhang et al., 2010;
Zhu et al., 2014; Guo et al., 2016; Li et al., 2016b; Sun et al., 2016),
viscoelastic time-reversal reconstruction and imaging (Zhu, 2014;
Wang et al., 2017b), and possible Q-FWI (Ren et al., 2014; Xue

et al., 2016; Xue et al., 2016; Yang et al., 2016a). This challenging
open problem will be our future work.
Finally, we would like to have a brief discussion on possible er-

rors of the proposed adaptive stabilization scheme. It is regrettable
that accuracy and stability are usually opposite each other; what we
need to do is to make a reasonable trade-off between them. As we
can see from Figure 7, our proposed method recovers as many high-
wavenumber components of the shallow structure as possible com-
pared with that of low-pass filtering, and it obtains comparable
accuracy with the filtering scheme at a medium propagation time.
After a relatively long traveltime, our method might generate inac-
curate results because of much more severe medium- and high-
wavenumber suppression, but our method enjoys better stability
during amplitude compensation for deep reflectors. A pre-estimated
range of the cut-off wavenumber might be beneficial to reach a bal-
ance between accuracy and stability. Alternatively, we can make the
cut-off wavenumber of the proposed adaptive stabilization scheme
converge to a constant wavenumber as the filtering method does
during long-time extrapolation, avoiding the unacceptable errors
resulting from severe high-wavenumber suppression. We will pay
much more attention to improving accuracy and stability of the pro-
posed method in our future research.

CONCLUSION

We have analytically derived k-space Green’s functions for
decoupled constant-Q wave equation and its
compensated equation. It is an exponentially di-
vergent time propagator of the Green’s function
that will result in numerical instability during at-
tenuation compensation. Based upon theoretical
analysis, we have developed an adaptive stabili-
zation scheme for Q-RTM, in which the stabili-
zation factor can be explicitly identified by the
specified gain limit according to an empirical for-
mula. In comparison with conventional low-pass
filtering, our proposed stabilization scheme ex-
hibits superior properties of time variance and
Q dependence. Noise-free Q-RTM using low-
pass filtering and adaptive stabilization have
been performed on a simple five-layer model
and the BP gas chimney model for verifying the
superiority of the proposed approach in terms of
fidelity and stability. We have also conducted sta-
bilized Q-RTM for the BP gas chimney model
with noisy data, which further demonstrates that
our proposed method brings better antinoise per-
formance and slight resolution enhancement.
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APPENDIX A

ANALYTICAL INTEGRATION USING CAUCHY’S
RESIDUE THEOREM

In this appendix, we outline the analytical integration using
Cauchy’s residue theorem in detail (Mitrinovic and Keckic, 1984).
As we can see from equation 14, the kernel function hðk;ωÞ has two
singularities located in the upper half-space of the complex plane
(Figure A-1). Here, we adopt the following approach proposed by
Treeby and Cox (2011) to solve the integration with respect to ω.
Cauchy’s residue theorem is considered as a powerful tool to evalu-
ate line integrals of analytic functions over closed curves. For sim-
plicity, we rewrite the kernel function hðk;ωÞ as

fðζÞ ¼ eiζðt−t0Þ

ζ2 þ iτjkj2γþ1c2ζ þ ηjkj2γþ2c2
: (A-1)

Setting t0 ¼ 0 without loss of generality, and the contour C may be
split into a straight part and a curved arc, so that the integration can
be expressed as

I
C
fðζÞdζ ¼

Z
Cstraight

fðζÞdζ þ
Z
Carc

fðζÞdζ;

¼ −2πifRes½fðζÞ; ζ1� þ Res½fðζÞ; ζ2�g;

¼ −2πi
�
eiξ1te−ξ2t

2ξ1
þ e−iξ1te−ξ2t

−2ξ1

�
;

¼ 2π
sinðξ1tÞe−ξ2t

ξ1
; (A-2)

where ζ1 and ζ2 are the two poles of kernel function hðk;ωÞ, which
are given in equation 16. Our goal is to solve the integration of the
kernel function hðk;ωÞ with respect to ω, where

Z
hðk;ωÞdω ¼ lim

R→∞
½
Z

R

−R
fðζÞdζ�;

¼
I
C
fðζÞdζ − lim

R→∞
½
Z
Carc

fðζÞdζ�: (A-3)

Therefore, we need to calculate the contour integral
limR→∞½∫ Carc

fðζÞdζ�. The estimation lemma is also known as
the ML inequality, gives an upper bound for a contour integral (Saff
and Snider, 1976). The statement is as follows:

LEMMA 1
If fðzÞ is a complex-valued, continuous function on the contour

Carc and if its absolute value jfðzÞj is bounded by a constant M for
all z on Carc, then ����

Z
Carc

fðzÞdz
���� ≤ MlðCarcÞ;

where lðCarcÞ is the arc length of Carc.
According to Lemma 1, we can obtain the following inequality:����
Z
Carc

eiζt

ζ2 þ iτjkj2γþ1c2ζ þ ηjkj2γþ2c2
dζ

����
≤
Z
Carc

���� eiζt

ζ2 þ iτjkj2γþ1c2ζ þ ηjkj2γþ2c2

����dζ;
≤
Z
Carc

1

jζ2 þ iτjkj2γþ1c2ζ þ ηjkj2γþ2c2j dζ;

≤
Z
Carc

1

R2 þ ηjkj2γþ2c2
dζ ¼ πR

R2 þ ηjkj2γþ2c2
: (A-4)

Note that, because t > 0 and for complex numbers in the upper half-
plane, the argument lies between 0 and π, one can estimate

jeiζtj ¼ jeitjζjðcos ϕþi sin ϕÞj ¼ e−tjζj sin ϕ ≤ 1: (A-5)

Therefore,

Z
Carc

���� eiζt

ζ2 þ iτjkj2γþ1c2ζ þ ηjkj2γþ2c2

����dζ
≤
Z
Carc

1

jζ2 þ iτjkj2γþ1c2ζ þ ηjkj2γþ2c2j dζ: (A-6)

Next, we seek an upper bound M for the integrand when jζj ¼ R;
here, we denote complex-valued function:

gðζÞ ¼ ζ2 þ iτjkj2γþ1c2ζ þ ηjkj2γþ2c2; (A-7)

which can be projected on the real plane as the following real-
valued function:

qðνÞ ¼ ν2 þ ηjkj2γþ2c2; (A-8)

where ν is the real part of ζ, and ηjkj2γþ2c2 can be estimated by
using the Vieta’s theorem

ηjkj2γþ2c2 ¼ ζ1 · ζ2 > −R2: (A-9)

–R R

Re

Im

Carc

Cstraight

Figure A-1. Integration of the kernel function hðk;ωÞ over the
contour C using Cauchy’s residue theorem.
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By the triangle inequality, we see that

jgðζÞj ¼ jqðRÞj ¼ jR2 þ ηjkj2γþ2c2j ≥ R2 þ ηjkj2γþ2c2 > 0:

(A-10)

Therefore,Z
Carc

1

jζ2 þ iτjkj2γþ1c2ζ þ ηjkj2γþ2c2j dζ

≤
Z
Carc

1

R2 þ ηjkj2γþ2c2
dζ: (A-11)

According to equation A-4, we have

lim
R→∞

�Z
Carc

fðζÞdζ
	
≤ lim

R→∞

πR
R2 þ ηjkj2γþ2c2

¼ 0: (A-12)

Therefore, the arc integration ∫ Carc
fðζÞdζ → 0 when R → ∞, and

henceZ
hðk;ωÞdω ¼

I
C
fðζÞdζ − lim

R→∞

�Z
Carc

fðζÞdζ
	
;

¼ 2π
sinðξ1tÞe−ξ2t

ξ1
: (A-13)
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