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Motivation

Background

I Amplitude absorption and phase distortion degrade the qual-
ity of seismograms, decrease the resolution of migrated
images and eventually affect the reliability of seismic inter-
pretation.

I In general, attenuation compensation in geophysics can be
roughly classified into two categories: seismic record-based
compensation and propagation-based compensation.
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Motivation

Motivation

I Inversion-based compensation enjoys better stability over
traditional inverse Q filtering. However, constrained L1

minimization serving as the convex relaxation of the literal
L0 sparsity count may not give the sparsest solution1.

I Recently, nonconvex metric for compressed sensing has
attracted considerable research interest2. We propose a
nearly unbiased approximation of the vector sparsity, de-
noted as L1−2 minimization, for exact and stable seismic
attenuation compensation.

1Tian-Hui Ma, Yifei Lou, and Ting-Zhu Huang. “Truncated l 1-2 Models for Sparse Recovery and Rank Mini-
mization”. In: SIAM Journal on Imaging Sciences 10.3 (2017), pp. 1346–1380.

2Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. “Enhancing sparsity by reweighted `1 minimiza-
tion”. In: Journal of Fourier analysis and applications 14.5 (2008), pp. 877–905.
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Motivation

I Amplitude attenuation and phase dispersion associated with
anelasticity occur during the wave propagation, so it is
more physically consistent to mitigate these effects in a
prestack depth migration34.

I Amplitude compensation is prone to boost high-frequency
noise in seismic data or the machine errors relative to work-
ing precision. We develop an adaptive stabilization scheme
for Q-ARTM and Q-ERTM, which exhibits the superior
properties of time-variance and Q-dependence over con-
ventional low-pass filtering.

3Yu Zhang, Po Zhang, and Houzhu Zhang. “Compensating for visco-acoustic effects in reverse-time migration”.
In: SEG expanded abstracts: 80th Annual international meeting. 2010, pp. 3160–3164.

4Tieyuan Zhu, Jerry M. Harris, and Biondo Biondi. “Q-compensated reverse-time migration”. In: Geophysics
79.3 (2014), S77–S87.
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L1−2 minimization for seismic attenuation compensation

Nonstationary convolution model

Kolsky-Futterman model

Kolsky (1956) and Futterman (1962) assumed that frequency-
dependent attenuation coefficient α(ω) is strictly linear with
frequency over the range of measurement:56

1

cp(ω)
=

1

cp(ω0)

(
1− 1

πQ(ω0)
ln

∣∣∣∣ ωω0

∣∣∣∣) , (1)

where cp(ω0) and Q(ω0) are the values of the phase velocity
and approximate Q at the reference frequency ω0.

5H Kolsky. “LXXI. The propagation of stress pulses in viscoelastic solids”. In: Philosophical magazine 1.8
(1956), pp. 693–710.

6Walter I Futterman. “Dispersive body waves”. In: Journal of Geophysical research 67.13 (1962), pp. 5279–
5291.
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L1−2 minimization for seismic attenuation compensation

Nonstationary convolution model

Modified Kolsky-Futterman model

Wang and Guo (2004) pointed out that the phase velocity for-
mula 1 is merely an asymptotic formula for ω � ω0.7 As ex-
ploration seismic data have relative low frequency range within
100−102 Hz, they therefore proposed a modified Kolsky-Futterman
model as follows:

1

cp(ω)
=

1

cp(ω0)

(
1− 1

πQ(ω0)
ln

∣∣∣∣h ωω0

∣∣∣∣) ≈ 1

cp(ω0)

∣∣∣∣ ωωh
∣∣∣∣−γ , (2)

where the dimensionless parameter γ = 1
πQ(ω0)

and ωh is a
redefined tuning parameter.

7Yanghua Wang and Jian Guo. “Modified Kolsky model for seismic attenuation and dispersion”. In: Journal of
Geophysics & Engineering 1.3 (2004), p. 187.
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Nonstationary convolution model

Modified Kolsky-Futterman model

The complex wavenumber of Modified Kolsky-Futterman model:

k(ω) =
ω

cp(ω0)

∣∣∣∣ ωωh
∣∣∣∣−γ (1− i

2Q(ω)

)
. (3)

Substituting the complex wavenumber k(ω) into the plane wave
expression, we have

p(x, t) = e
i

[
ωt− ω

cp(ω0)

∣∣∣ ωωh ∣∣∣−γ(1− i
2Q(ω))x

]

= eiωte
−i ω

cp(ω0)

∣∣∣ ωωh ∣∣∣−γx
e
− ω

2cp(ω0)Q(ω)

∣∣∣ ωωh ∣∣∣−γx
.

(4)
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Nonstationary convolution model

Modified Kolsky-Futterman model

We first replace the distance x with the traveltime τ = x
cp(ω0)

,

and then define the following attenuation function

a(ω, τ) = e
iωτ

(
1−
∣∣∣ ωωh ∣∣∣−γ

)
e
− ωτ

2Q(ω)

∣∣∣ ωωh ∣∣∣−γ

≈ e
iωτ

(
1−
∣∣∣ ωωh ∣∣∣−γ

)
e
− ωτ

2Q(ω0)

∣∣∣ ωωh ∣∣∣−γ ,
(5)

where the two exponential terms dominate phase dispersion and
amplitude attenuation, respectively.
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Nonstationary convolution model

Nonstationary convolution model

The formula for nonstationary convolution model in the fre-
quency domain can be described as follows:

s(ω) = w(ω)

∫ T

0

a(ω, τ)r(τ)e−iωτdτ, (6)

which can be discretized into a matrix-vector form:

s = WAr, (7)

where the kernel matrix W represents the wavelet’s band-pass
filtering effects and matrix A stands for the earth’s Q filtering
effects.
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Nonstationary convolution model

Two-step compensation scheme

The frequency-domain discrete expression of the equation 7
gives the following close-form expression:

 w(ω1)a(ω1, τ1)e−iω1τ1 . . . w(ω1)a(ω1, τT )e−iω1τT

...
. . .

...
w(ωL)a(ωL, τ1)e−iωLτ1 . . . w(ωL)a(ωL, τT )e−iωLτT


 r1

...
rT

 =

 s(ω1)
...

s(ωL)

 .
(8)

The compensated seismic records can be obtained by convolut-
ing a wavelet, i.e.,

χ = Wr = WA−1W−1s. (9)

Instead of solving for χ using equation 9 directly, we perform
seismic attenuation compensation via a two-step scheme.



SWP Report

L1−2 minimization for seismic attenuation compensation

Nonstationary convolution model

Two-step compensation scheme

WA
W A

A-1 W-1

W   A-1

Figure 1. The diagram of the direct and two-step compensation processes, where the

green line represents direct compensation method using A−1, the red lines stand for

two-step compensation scheme using opertors A−1W−1 and W.
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L1−2 minimization for seismic attenuation compensation

Inversion-based compensation

Inversion with L1 constraint

Inversion-based compensation in the frequency domain can be
achieved by defining the following cost function with L1 norm:

min
r

1

2
‖Φr− s‖2

2 + λ ‖r‖1 , (10)

where the kernel matrix Φ = WA responsible for both the
wavelet’s band-pass filtering effects and the earth’s Q filter-
ing effects. The matrix Φ can be considered as sensing ma-
trix, which is required to satisfy the restricted isometry property
(RIP) with small restricted isometry constants8.

8Emmanuel J Candes and Terence Tao. “Decoding by linear programming”. In: IEEE transactions on information
theory 51.12 (2005), pp. 4203–4215.
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Inversion-based compensation

RIP examination

It is generally NP-hard to verify whether Φ is a RIP matrix or
not9. Alternative way to predict RIP of Φ is the so-called coher-
ence, which is closely related to the RIP yet easy to examine10.

µΦ(i, j) :=
|ΦT

i Φj|
‖Φi‖2 ‖Φj‖2

, i 6= j, (11)

where Φi and Φj are arbitrary two columns from Φ.

9Afonso S. Bandeira et al. “Certifying the Restricted Isometry Property is Hard”. In: IEEE Transactions on
Information Theory 59.6 (2013), pp. 3448–3450.

10D. L. Donoho and X. Huo. “Uncertainty principles and ideal atomic decomposition”. In: IEEE Transactions
on Information Theory 47.7 (2002), pp. 2845–2862.
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Inversion-based compensation

RIP examination

Figure 2. Visualization of (a) the frequency-domain matrix Φ and (b) its coherence

coefficients.
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Inversion-based compensation

RIP examination

Figure 3. Visualization of (a) the time-domain matrix Φ̂ and (b) its coherence

coefficients.
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Inversion-based compensation

Time-domain inversion

As frequency-domain sensing matrix Φ exhibits high coherence,
thus resulting in degraded inversion performance, we reformu-
late a new misfit function by transforming frequency-domain
formula 10 into the time domain, and we have

min
r

1

2

∥∥∥Φ̂r− ŝ
∥∥∥2

2
+ λ ‖r‖1 , (12)

where the new kernel matrix Φ̂ is obtained by transforming Φ
into time domain and reshaping it as a diagonal matrix form.
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Inversion-based compensation

Nonconvex metrics

Figure 4. Contours of different penalties: (a) L0, (b) Llog (LSP), (c) Lp (p = 0.5),

(d) L1−2, (e) L1 and (f) L2.
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Inversion-based compensation

Inversion with L1−2 constraint

We incorporate L1−2 metric into the inversion-based compen-
sation scheme, the misfit function with L1−2 minimization is
given as follows11

min
r

1

2

∥∥∥Φ̂r− ŝ
∥∥∥2

2
+ λ(‖r‖1 − α ‖r‖2), (13)

where the weighted parameter α with the range of [0, 1] is pro-
vided to deal with ill-conditioned matrices when L1−2 fails to
obtain a good solution12.

11Yufeng Wang et al. “L1-2 minimization for exact and stable seismic attenuation compensation”. In: Geophysical
Journal International 213.3 (2018), pp. 1629–1646.

12Yifei Lou, Stanley Osher, and Jack Xin. “Computational Aspects of Constrained L1-L2 Minimization for Com-
pressive Sensing”. In: Petroleum Science & Technology 23.1 (2015), pp. 47–54.
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Solver for L1−2 minimization

DCA

For the convenience and simplicity of formulas’ deducing, we
rewrite equation 13 as the following uniform formula:

min
x

1

2
‖Ax− b‖22 + λ(‖x‖1 − α ‖x‖2), (14)

with A = Φ̂, x = r and b = ŝ. The DCA is an robust and
efficient descent method to cope with the minimization of an
objective function F (x) = G(x)−H(x), where G(x) and H(x)
are proper convex functions13. It gives{

yk ∈ ∂H(xk),
xk+1 = arg minx∈Rn G(x)−

(
H(xk) + 〈yk, x− xk〉

)
.

(15)

13Pham Dinh Tao and Le Thi Hoai An. “A DC optimization algorithm for solving the trust-region subproblem”.
In: SIAM Journal on Optimization 8.2 (1998), pp. 476–505.
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Solver for L1−2 minimization

DCA

The objective in 14 has the following convex decomposition

F (x) =

(
1

2
‖Ax− b‖22 + λ ‖x‖1

)
− αλ ‖x‖2 , (16)

where −αλ ‖x‖2 is differentiable with gradient

yk =

{
0, if xk = 0,

−αλ xk

‖xk‖2
, otherwise.

(17)

According to DCA iteration 15, L1−2 minimization 16 can be
solved by the following scheme:

xk+1 = arg minx∈Rn
1

2
‖Ax− b‖22 + λ ‖x‖1 + 〈yk, x〉. (18)
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Solver for L1−2 minimization

ADMM

The trick of ADMM formula is to decouple the coupling between
the quadratic term and L1 penalty by introducing an auxiliary
variable z, equation 18 is equivalent to the following constrained
minimization problem:

xk+1 = arg minx∈Rn
1

2
‖Ax− b‖22 + 〈yk, x〉+ λ ‖z‖1 subject to x− z = 0. (19)

The augmented Lagrangian can be expressed as

Lρ(x, z, w) =
1

2
‖Ax− b‖22 + 〈yk, x〉+ λ ‖z‖1 + wT (x− z) +

ρ

2
‖x− z‖22 , (20)

where y is the Lagrangian multiplier, ρ is the penalty parameter.
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Solver for L1−2 minimization

ADMM

The unscaled-form ADMM consists of the iterations1415:
zl+1 = arg minz Lρ(xl, z, wl),
xl+1 = arg minx Lρ(x, zl+1, wl),
wl+1 = wl + ρ(xl+1 − zl+1),

(21)

where the z-update and x-update steps have the closed-form
solutions via soft-thresholding and gradient method16.

14Stephen Boyd et al. “Distributed Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers”. In: Foundations & Trends in Machine Learning 3.1 (2011), pp. 1–122.

15Penghang Yin et al. “Minimization of `1−2 for compressed sensing”. In: SIAM Journal on Scientific Computing
37.1 (2015), A536–A563.

16Yin et al., “Minimization of `1−2 for compressed sensing”.
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Solver for L1−2 minimization

Two implementations

We have provided close-form expression of DCA and ADMM,
here we will investigate two L1−2 implementations based on
DCA and ADMM with distrinct execution order of the iterations
17 and 21.

I In the first scheme, also called DCA-L1−2, the gradient y is
updated after l1max inner iterations of ADMM within k1

max

outer iterations;

I whereas the gradient y is updated after every iteration of
ADMM, x, z, w and y are updated simultaneously within
l2max iterations, in the second scheme called ADMM-L1−2.
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Solver for L1−2 minimization

DCA-L1−2

Figure 5. The pseudo-code of DCA-L1−2.
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Solver for L1−2 minimization

ADMM-L1−2

Figure 6. The pseudo-code of ADMM-L1−2.
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Examples

2D noise-free synthetic data

Figure 7. Seismic attenuation compensation on 2D noise-free synthetic data, (a)

acoustic data, (b) attenuated data, (c) compensated data using DCA-L1−2 algorithm

and (d) compensated data using ADMM-L1−2 algorithm.
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Examples

2D noise-free synthetic data

Figure 8. Comparison between DCA-L1−2 and ADMM-L1−2 in terms of residual

errors versus iterations.
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Examples

2D noisy synthetic data

Figure 9. Seismic attenuation compensation on 2D noisy synthetic data, (a) noisy

attenuated data, (b) compensated data using L1 minimization (SNR=9.57), (c)

compensated data using weighted DCA-L1−α2 algorithm (where α = 0.5,

SNR=10.23) and (d) compensated data using DCA-L1−2 algorithm (SNR=10.77).
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Examples

2D noisy synthetic data

Figure 10. Comparison between L1, weighted DCA-L1−α2 and DCA-L1−2 in terms

of (a) SNR versus iterations and (b) residual errors versus iterations.
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Examples

2D field data

Figure 11. 2D original attenuated data.
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Examples

2D field data
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Figure 12. The Gabor spectra of five reference traces from original attenuated data.
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Examples

2D field data

Figure 13. The estimated effective Q model from original attenuated data, which is

obtained by horizontal interpolation from five reference Q curves.
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Examples

2D field data

Figure 14. Compensated data using our peoposed L1−2 minimization.
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Examples

2D field data

Figure 15. Zoomed view of the 2D field data, (top) original attenuated data from the

boxes shown in Figure 11; (bottom) compensated data from the boxes shown in

Figure 14.
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Examples

2D field data

Figure 16. Comparison of compensation performance using three reference traces

extracted from Figures 11 and 14 at (a) X=100, (b) X=220 and (c) X=430,

respectively.
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Examples

2D field data

Figure 17. Comparison of the averaged spectra from the original data shown in Figure

11 and the compensated data shown in Figure 14.
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Examples

3D field data

Figure 18. Seismic attenuation compensation on 3D field data, (left) original

attenuated data and (right) compensated data using our peoposed L1−2 minimization.
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Examples

3D field data

Figure 19. Comparison of compensation performance using corssline sections at X =

40 from (a) the original data shown in Figure 18a and (b) the compensated data

shown in Figure 18b and time slices at t = 1s from (c) the original data shown in

Figure 18a and (d) the compensated data shown in Figure 18b.
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Examples

Wavelet dependence
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Figure 20. Seismic attenuation compensation using inaccurate wavelet, (a) the

compensated 1D clean data and (b) their corresponding different wavelets.
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Examples

Wavelet dependence
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Figure 21. Seismic attenuation compensation using inaccurate wavelet, (a) the

compensated 1D noisy data and (b) their corresponding different wavelets.
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Examples

Parameter selection
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Figure 22. Seismic attenuation compensation using different balancing parameters λ

tested on 1D clean data.
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Examples

Parameter selection
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Figure 23. Seismic attenuation compensation using different balancing parameters λ

tested on 1D noisy data.
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Adaptive stabilization for Q-ARTM and Q-ERTM

Constant-Q wave equation and k-space Green’s function

From temporal fractional derivatives to DFLs

Several researchers reformulated the temporal fractional deriva-
tives into the decoupled fractional Laplacians (DFLs) using the
smallness approximation and Euler’s formula17181920. Consider-
ing the Fourier transform of the fractional temporal derivative
of the wavefiled function u(r, t),

F
{
∂αu(r, t)

∂tα

}
= (iω)αU(k, ω). (22)

17W. Chen and S Holm. “Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting
arbitrary frequency power-law dependency.”. In: Journal of the Acoustical Society of America 115.4 (2004),
pp. 1424–30.

18B. E. Treeby and B. T. Cox. “Modeling power law absorption and dispersion for acoustic propagation using the
fractional Laplacian.”. In: Journal of the Acoustical Society of America 127.5 (2010), pp. 2741–48.

19Jose M. Carcione. “A generalization of the Fourier pseudospectral method”. In: Geophysics 75.6 (2010),
A53–A56.

20Tieyuan Zhu and Jerry M. Harris. “Modeling acoustic wave propagation in heterogeneous attenuating media
using decoupled fractional Laplacians”. In: Geophysics 79.3 (2014), T105–T116.
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Adaptive stabilization for Q-ARTM and Q-ERTM

Constant-Q wave equation and k-space Green’s function

From temporal fractional derivatives to DFLs

Using the smallness approximation kI � kR (k ≈ ω/c0) and
Euler’s formula

(iω)α = cos
(πα

2

)
ωα + (iω)sin

(πα
2

)
ωα−1

≈ cos
(πα

2

)
cα0k

α + (iω)sin
(πα

2

)
cα−1

0 kα−1.
(23)

Using the definition of the fractional Laplacian

F{(−∇2)αu(r, t)} = k2αU(k, ω). (24)
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Constant-Q wave equation and k-space Green’s function

General principle of Q-RTM

Constant-Q viscoacoustic wave equation with DFLs was firstly
proposed by Zhu and Harris (2014) as follows21


1

c2(x)

∂2p

∂t2
(x, t)−η(−∇2)γ+1p(x, t)−τ

∂

∂t
(−∇2)γ+1/2p(x, t) = δ(x− xs)f(t),

p(x, t) =
∂p

∂t
(x, t) = 0, x ∈ Ω, t < 0.

(25)

The coefficients of two fractional Laplacians are given by

η(x) = −c2γ(x)0 (x)ω
−2γ(x)
0 cos(πγ(x)), (26)

τ(x) = −c2γ(x)−10 (x)ω
−2γ(x)
0 sin(πγ(x)). (27)

21Zhu and Harris, “Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled
fractional Laplacians”.



SWP Report

Adaptive stabilization for Q-ARTM and Q-ERTM

Constant-Q wave equation and k-space Green’s function

General principle of Q-RTM

Zhu et al. (2014) implemented Q-RTM applying the zero-lag
crosscorrelation imaging condition22

I(x) =

∫ T

0

ps(x, t)pr(x, t)dt, (28)

where the source wavefield ps(x, t) and receiver wavefield pr(x, t)
are compensated simultaneously.


1

c2(x)

∂2ps

∂t2
(x, t)−η(−∇2)γ+1ps(x, t)+τ

∂

∂t
(−∇2)γ+1/2ps(x, t) = δ(x− xs)f(t),

ps(x, t) =
∂ps

∂t
(x, t) = 0, x ∈ Ω, t < 0.

(29)
1

c2(x)

∂2pr

∂t2
(x, t)−η(−∇2)γ+1pr(x, t)+τ

∂

∂t
(−∇2)γ+1/2pr(x, t) = δ(x− xr)g(x, T − t),

g(x, t) = p(x, t), x ∈ xr, t ∈ [0, T ],

(30)

22Zhu, Harris, and Biondi, “Q-compensated reverse-time migration”.
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The k-space Green’s functions

The k-space Green’s function of equation 25 can be obtained
by enforcing a point source at time t = t0 and at the loca-
tion x = xs and then performing space-time Fourier trans-
form, it yields frequency-wavenumber harmonic Green’s func-
tion G(k, ω), which is the solution of the following Helmholtz
equation23(

ω2

c2
+ η|k|2γ+2 + iωτ |k|2γ+1

)
G(k, ω) =

1

(2π)d+1
e−iωt0eikxs . (31)

23Yufeng Wang et al. “Adaptive stabilization for Q-compensated reverse time migration”. In: Geophysics 83.1
(2018), S15–S32.
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The k-space Green’s functions

Solving for frequency-wavenumber harmonic Green’s function
G(k, ω) and then applying d + 1 dimensional inverse Fourier
transform, we have

G(x, t) =
c2

(2π)d+1

∫ ∞
−∞

∫
Cd
h(k, ω)dkdω, (32)

where the integral kernel function is

h(k, ω) =
eiω(t−t0)e−ik(x−xs)

ω2 + η|k|2γ+2c2 + iωτ |k|2γ+1c2
. (33)
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The k-space Green’s functions

The two singularities of this integral kernel function h(k, ω) can
be obtained by solving ω for the following equation

ω2

c2
+ η|k|2γ+2 + iωτ |k|2γ+1 = 0. (34)

The solutions of equation 34 are given by

ζ1,2(k) = ±ξ1(k) + iξ2(k), (35)

where
ξ1(k) =

√
−τ2c4|k|4γ+2 − 4ηc2|k|2γ+2/2, (36)

ξ2(k) = −τc2|k|2γ+1/2. (37)
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The k-space Green’s functions

According to Cauchy’s residue theorem, we deduce the analyti-
cal integration of h(k, ω) with respect to ω∫ ∞

−∞
h(k, ω)d(ω) = 2π

sin(ξ1(k)t)e−ξ2(k)t

ξ1(k)
. (38)

Therefore this Green’s function can be further expressed as

G(x, t) =
c2

(2π)d

∫
Cd

Γatt(k, t)dk, (39)

where the attenuated time propagator Γatt(k, t) is given by

Γatt(k, t) =
sin(ξ1(k)t)e−ξ2(k)t

ξ1(k)
. (40)
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The k-space Green’s functions

The Green’s function for compensated equations 29 and 30 can
be derived by reversing the absorption-related term τ in sign
but leaving the other term η unchanged. The compensated
time propagator Γcomp(k, t) is

Γcomp(k, t) =
sin(ξ1(k)t)eξ2(k)t

ξ1(k)
. (41)

For lossless media, we have

Γaco(k, t) = Γcomp(k, t) = Γatt(k, t) =
sin(c0|k|t)
c0|k|

. (42)
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Constant-Q wave equation and k-space Green’s function

The k-space Green’s functions

Figure 24. Time propagators of k-space Green’s functions for: (a) acoustic wave

equation, (b) constant-Q wave equation, (c) compensated constant-Q wave equation.
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Adaptive stabilization

Wang (2006) proposed a stabilized amplitude-compensated op-
erator for inverse Q filtering24.

Λ(τ, ω) =
β(τ, ω)

β2(τ, ω) + σ2
, (43)

where β(τ, ω) is an amplitude-attenuated operator and σ2 is the
stabilization factor. We propose a similar adaptive stabilization
for Q-RTM by defining the amplitude-attenuated operator

β(k, t) = e−ξ2(k)t, (44)

and stabilized amplitude-compensated operator

Λ(k, t) =
β(k, t)

β2(k, t) + σ2
=

eξ2(k)t

1 + σ2e2ξ2(k)t
. (45)

24Yanghua Wang. “Inverse Q-filter for seismic resolution enhancement”. In: Geophysics 71.3 (2006), pp. V51–
V60.
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Adaptive stabilization

Adaptive stabilization

In fact, the compensation operator eξ2(k)t has been embodied
in equations 29 and 30, therefore we merely need to modify the
Q-RTM scheme by introducing a stabilization operator given as

S(k, t) =
1

1 + σ2e2ξ2(k)t
. (46)

The attenuation and compensation effects in Q-RTM are con-
sidered to be accumulated from the starting time to the current
time, and thus we need to perform stabilization at every time
step ∆t.

n∏
l=1

s(k, l∆t) = S(k, n∆t). (47)
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Adaptive stabilization

Adaptive stabilization

The final form of our proposed stabilization operator can be
given by

s(k, l∆t) =


1

1 + σ2e2ξ2(k)∆t
, l = 1,

1 + σ2e2ξ2(l−1)∆t

1 + σ2e2ξ2l∆t
, l = 2, 3, . . . , n.

(48)
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Adaptive stabilization

Adaptive stabilization
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Figure 25. The stabilized compensation coefficients Λ(k, t) varying with: (a) different

traveltime t = 0.5 s, 1.0 s and 1.5 (Q = 30 and σ2 = 0.1%), (b) different quality

factor Q = 120, 60 and 30 (t = 1.5 and σ2 = 0.1%).
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Adaptive stabilization vs. low-pass filtering
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cut-off parameters ρ: (left) Tukey windows and (right) their power spectra.
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Adaptive stabilization vs. low-pass filtering
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Adaptive stabilization

Adaptive stabilization vs. low-pass filtering

Figure 29. The compensated time propagators stabilized by (a) adaptive stabilization

(σ2 = 2.5× 10−7) and (b) low-pass Tukey filtering (ρ = 0.16 m−1). We clip the

same amplitude value for these two figures.
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Viscoelastic wave equation with DFLs

The constant-Q viscoelastic wave equation with DFLs in a first-
order matrix form:

∂tu
� = Hu� + f , (49)

where u� = (vx, vz, σxx, σzz, σxz)
T is the 5 × 1 unknown field

array, f = (fx, fz, 0, 0, 0)T is the 5× 1 source array, and

H =


0 0 1/ρ∂x 0 1/ρ∂z
0 0 0 1/ρ∂z 1/ρ∂x

(λ + 2µ)∂x λ∂z 0 0 0

λ∂x (λ + 2µ)∂z 0 0 0
µ∂z µ∂x 0 0 0


(50)
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From viscoacoustic to viscoelastic

Viscoelastic wave equation with DFLs

λ and µ in this operator represent generalized Lamé coefficients
under viscoelastic case, which can be expressed as

λ + 2µ = ηpDp + τpAp∂t, (51)

µ = ηsDs + τsAs∂t, (52)

λ = (ηpDp + τpAp∂t)− 2 (ηsDs + τsAs∂t) . (53)

There are two fractional Laplacians in these coefficients, i.e.,

Dm = (−∇2)γm , Am = (−∇2)γm−1/2, m = p, s, (54)

which are respectively responsible for phase velocity dispersion
and amplitude attenuation.
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Viscoelastic wavefield decomposition

We conduct P- and S-wavefield decomposition by introducing
the P-wave stress variable σp and S-wave stress variable σs.

∂tu
◦ = Wu•, (55)

where u◦ = (σp, vxp, vzp, σs, vxs, vzs)
T is the 6× 1 decomposed

wavefield array, u• = (vx, vz, σp, σs)
T is the 4× 1 hybrid wave-

field array, and

W =


(λ + 2µ)∂x λ∂z 0 0

0 0 1/ρ∂x 0
0 0 1/ρ∂z 0

µ∂z −µ∂x 0 0
0 0 0 1/ρ∂z
0 0 0 −1/ρ∂x

 . (56)
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From viscoacoustic to viscoelastic

Viscoelastic wavefield decomposition
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From viscoacoustic to viscoelastic

Viscoelastic imaging condition

We adopt source-normalized crosscorrelation imaging conditions
in the inner product form for vector-based viscoelastic imaging.

Ipp(x) =

∫ T
0

vS
a

p (x, t) · vRcp (x, t)∫ T
0

vSap (x, t) · vSap (x, t)
dt,

Ips(x) =

∫ T
0

vS
a

p (x, t) · vRcs (x, t)∫ T
0

vSap (x, t) · vSap (x, t)
dt.

(57)
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Mode-dependent adaptive stabilization

In homogeneous media, the second-order viscoelastic wave equa-
tion has the following form:

ρ
∂2u

∂t2
− (ηpDp + τpAp∂t)∇(∇ ·u) + (ηsDs + τsAs∂t)∇× (∇×u) = 0,

(58)

According to Helmholtz’s theorems, the vector equation 58 can
be split into P- and S-wave propagation:

ρ
∂2up
∂t2

− (ηpDp + τpAp∂t)∇(∇ · up) = 0, (59)

and

ρ
∂2us
∂t2

+ (ηsDs + τsAs∂t)∇× (∇× us) = 0. (60)
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Mode-dependent adaptive stabilization

The P- and S-wave modes satisfy an unified form. Therefore,
the mode-dependent adaptive stabilization can be given as

Υm(k, l∆t) =


1

1 + σ2e2ξm(k)∆t
, l = 1,

1 + σ2e2ξm(l−1)∆t

1 + σ2e2ξm(k)l∆t
, l = 2, 3, . . . , n,

(61)
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Mode-dependent adaptive stabilization
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Figure 30. The stabilized compensation coefficients Λ(k, t) varying with: (a) different

travel time t = 0.5 s, 1.0 s, and 1.5 (Qp = 30 and σ2 = 0.1%), (b) different quality

factor Qp = 120, 60, and 30 (t = 1.5 and σ2 = 0.1%), where the solid lines represent

a P-wave and dash lines an S-wave. For simplicity, we set cp/cs = 1.7 and

Qp/Qs = 1.3 for this synthetic example.
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Synthetic test: Q-ARTM

Figure 31. (left) Velocity and (right) Q of BP gas chimney model, which contains a

high-attenuation gas chimney exhibiting an extreme attenuating property with Q = 20.
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Examples

Synthetic test: Q-ARTM

Figure 32. Migrated images obtained using (a) acoustic RTM, (b) viscoacoustic RTM

without compensation, (c) low-pass filtered Q-RTM and (d) adaptively stabilized

Q-RTM.
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Field data application: Q-ARTM

Figure 33. (top) Velocity and (bottom) Q models for field data.
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Field data application: Q-ARTM

Figure 34. Migrated images of the field data using (top) conventional RTM from

viscoacoustic media without compensation, (bottom) Q-RTM.
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Field data application: Q-ARTM

Figure 35. Zoom view of the images shown in the boxs in Figure 34.
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Synthetic test: Q-ERTM

Figure 36. (left) P-wave velocity and (right) Qp of the Marmousi model, and S-wave

velocity cs and S-wave quality factor Qs are simply obtained by setting cp/cs = 1.7

and Qp/Qs = 1.3.
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Synthetic test: Q-ERTM

Figure 37. Migrated PP images of the Marmousi model obtained by (a) elastic RTM,

(b) viscoelastic RTM without compensation, (c) low-pass filtered Q-ERTM, and (d)

adaptively stabilized Q-ERTM.
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Synthetic test: Q-ERTM

Figure 38. Migrated PS images of the Marmousi model obtained by (a) elastic RTM,

(b) viscoelastic RTM without compensation, (c) low-pass filtered Q-ERTM, and (d)

adaptively stabilized Q-ERTM.
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Figure 39. Migrated traces selected arbitrarily from PP imaging results at three

distances of (a)(d) 1.6 km, (b)(e) 3.8 km and (c)(f) 5.2 km.
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Figure 40. Wavenumber spectra corresponding to the traces shown in Figure 39.
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Field data application: Q-ERTM

Figure 41. (top) P-wave velocity and (bottom) S-wave velocity of the field data.
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Field data application: Q-ERTM

Figure 42. Migrated images obtained from (a)(b) conventional ERTM without

attenuation compensation, (c)(d) low-pass filtered Q-ERTM, and (e)(f) adaptively

stabilized Q-ERTM.
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Figure 43. Wavenumber spectra of the reference traces selected from migrated images

(X = 6 km), where the black lines stand for the spectra of the the non-compensated

traces, the red lines for the conventional filtered ones, and the blue lines for the

adaptively satabilized ones.



SWP Report

High performance computing and code packages

Outline
Motivation
L1−2 minimization for seismic attenuation compensation

Nonstationary convolution model
Inversion-based compensation
Solver for L1−2 minimization
Examples

Adaptive stabilization for Q-ARTM and Q-ERTM
Constant-Q wave equation and k-space Green’s function
Adaptive stabilization
From viscoacoustic to viscoelastic
Examples

High performance computing and code packages
Reproducible research
Architecture of cuQ-RTM code package
Speedup and scaling

Summary



SWP Report

High performance computing and code packages

Reproducible research

Reproducible Research

I Claerbout’s principle - an article about computational science in a sci-
entific publication is not the scholarship itself, it is merely advertising
of the scholarship. The actual scholarship is the complete software
development environment and the complete set of instructions which
generated the figures. (SEPlib)

I Dave Donoho’s approach was to make sure that the details underlying
the datasets, simulations, figures and tables were all expressed uni-
formly in the standard language and computing environment Matlab,
and made available on the internet, so that interested parties could
reproduce the calculations underlying that paper. (WaveLab)

I Sergey Fomel et. al. developed Madagascar: open-source software
project for multidimensional data analysis and reproducible compu-
tational experiments. (Madagascar)
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Reproducible research

Benefits from Reproducible Research

I If everyone in a research team knows that everything they do is going
to someday be published for reproducibility, they will behave differ-
ently and will do better work.

I It is a fundamental fact that in striving for reproducibility, we are pro-
ducing code for the use of strangers. Developing for a stranger means
avoiding reliance on this soft, transient knowledge; more specifically,
codifying that knowledge objectively and reproducibly.

I There are some very important strangers in our lives: our co-authors,
our students and future employers.

I More citation, more attention and more influence.



SWP Report

High performance computing and code packages

Architecture of cuQ-RTM code package
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Figure 44. The architecture of the cuQ-RTM code package. The “living” package is

available from GitHub at https://github.com/Geophysics-OpenSource/cuQRTM25

25Yufeng Wang et al. “CuQ-RTM: A CUDA-based code package for stable and efficient Q-compensated RTM”.
In: Geophysics 84.1 (2018), pp. 1–69.

https://github.com/Geophysics-OpenSource/cuQRTM
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Figure 45. Speedup and scaling test of the cuQ-RTM code package.
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I Seismic attenuation compensation is an important method to en-
hance signal resolution and fidelity, which can be performed on either
prestack (Q-RTM) or poststack data (L1−2 minimization).

I Compared to conventional L1 metric, our proposed L1−2 penalty
has potential to recover exact sparse reflectivity series from noisy
attenuated seismograms (kernel matrix is severely ill-conditioned).

I Compared to conventional low-pass filtering, our proposed stabiliza-
tion scheme exhibits superior properties of time-variance and Q-
dependence.

I We present a CUDA-based code package named cuQ-RTM, which
aims to achieve an efficient, storage-saving and stable Q-RTM.
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Rethink of the motivation

My current work is mainly motivated by the following open problems:

1. What is the most foundamental governing equation that can well
explain wave propagation in attenuating media? How to reach a
reconciliation of experimentally established frequency power law and
physically based mechanical models?

2. What is the physical and mathematical connections among different
attenuation models? how and why does the increasingly investigated
fractional attenuation model work?

3. How can we effectively compensate the subsurface Q filtering ef-
fects during prestack seismic migration or poststack seismic profile
processing?

4. What can we learn from such an intrinsic attenuation of the subsur-
face? how does it reflect rock physics properties, physical processes
at play in earth?
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Some perspectives

I All attenuation models are either based on experimental
observation or mathematical (mechanical) approximation,
there are many criterions to determine which model should
be used? for example, experimentally fit, physically clear,
mathematically concise, computationally efficient. Person-
ally, I prefer to fractional models due to its concise pa-
rameterization and ability to model frequency-dependent
attenuation over a wide band.
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Some perspectives

I Fractional models as a generalization of classical models
have the ability to characterize weak frequency-dependent
(frequency power-law) seismic attenuation, which can be
represented by classical elements with the number of units
tends to infinity. Fractional model is not merely an empir-
ical generalization of classical model, it may provide more
fundamental explanation for dynamic system. More atten-
tion should be paied to this area from physics, engineering
and mathematics communities.
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Some perspectives

I Attenuation compensation in geophysics can be roughly
classified into two categories: seismic record-based com-
pensation and propagation-based compensation. I propose
a nearly unbiased approximation of the vector sparsity, de-
noted as L1−2 minimization, for exact and stable seismic
attenuation compensation. I develop an adaptive stabiliza-
tion scheme for Q-ARTM and Q-ERTM, which exhibits
the superior properties of time-variance and Q-dependence
over conventional low-pass filtering.
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Some perspectives

I Apart from compensating Q effects, we may expect to ob-
tain some reservoir and geological information from atten-
uation and to better understand the physical processes at
play in earth. The one thing I am sure is that attenuation
of wave propagation is a wide scientific problem and in-
volves a rich body of applications from seismic exploration,
seismology, and material science. I would devote more at-
tention to this area during my postdoctoral research.
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