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Motivation

I The classical mechanical models such as the Maxwell model,
the Kelvin-Voigt model, and the Zener model typically ex-
hibit strong frequency dependence contradictory to many
experimental measurements.

I To better capture the viscoelastic behaviour of the subsur-
face media, multiple and fractional generalizations of the
classical models have been intensively studied in the past
decades.

I We revisited the mainstream development of mechanical
models and investigated the mathematical equivalence be-
tween multiple and fractional generalizations by the means
of the spectral fitting.
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I Specifically, we constructed a mechanical model with multi-
ple Maxwell models in parallel to approximate the fractional
Zener model. Numerical results show good agreement be-
tween these two generalized models.

I This study aims to provide geophysicists with a deep in-
sight into fractional attenuation models and more con-
fidence when using these models for seismic attenuation
modeling, inversion and compensation.



SWP Report

Essentials of Linear viscoelasticity

Outline

Motivation

Essentials of Linear viscoelasticity

Fractional Zener model

Generalized Mechanical models

Spectral fitting method
Time spectra and frequency spectra
Mechanical approximation for fractional Zener model

Summary



SWP Report

Essentials of Linear viscoelasticity

Constitutive law

According to Boltzmann superposition principle, the constitu-
tive equation of linear viscoelasticity can be represented as the
convolution integral form:{

σ(t) = Ggε(t) +
∫ t

0
Ġ(t− τ)ε(τ)dτ,

ε(t) = Jgσ(t) +
∫ t

0
J̇(t− τ)σ(τ)dτ.

(1)
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Classical mechanical models

The classical models with simple combination of mechanical ele-
ments (no more than three elements) have the following general
form of the material functions1:{

G(t) = Ge +G1e
−t/τσ +G−δ(t),

J(t) = Jg + J1

(
1− e−t/τε

)
+ J+t,

(2)

where J1 = Je − Jg and G1 = Gg −Ge can be considered as a
single constant relaxation (retardation) spectrum.

1Francesco Mainardi. Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical
models. World Scientific, 2010.
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Multiple mechanical models

In principle, any time function can be described by a suitable
series or parallel ensemble. By using the combination rule, gen-
eral material functions of multiple mechanical models turn out
to be of the type

G(t) = Ge +
N∑
i=1

Gie
−t/τσ,i +G−δ(t),

J(t) = Jg +
N∑
i=1

Ji
(
1− e−t/τε,i

)
+ J+t.

(3)
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Fractional mechanical models

A genral material functions of fractional models is given by2
G(t) = Ge +

n∑
i=1

GiEν [−(t/τσ,i)
ν ] +G−

t−ν

Γ(1−ν)
,

J(t) = Jg +
n∑
i=1

Ji [1− Eν [−(t/τε,i)
ν ]] + J+

tν

Γ(1+ν)
,

(4)

where Eν is the Mittag-Leffler function of order ν. Generally
speaking, the fractional mechanical models has ability to accu-
rately portray measured properties over decades of frequencies
of motion with very few parameters.

2Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models.
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The Zener model

The stree-strain relation of the Zener model can be written as:

σ(t) + τσ
dσ

dt
= m

(
ε(t) + τε

dε

dt

)
. (5)

The corresponding complex modulus is

G∗(ω) = m

(
1 + iωτε
1 + iωτσ

)
, (6)

and its loss tangent is given by

tanδ(ω) =
G
′′
(ω)

G′(ω)
=
ω(τε − τσ)

1 + ω2τετσ
, (7)
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The Zener model

The relaxation function G(t) and creep function J(t) of Zener
model can be obtained by G(t) = Ge +G1e

−t/τσ , G1 =
(
τε
τσ
− 1
)
m,

J(t) = Jg + J1

(
1− e−t/τε

)
, J1 =

(
1− τσ

τε

)
1
m
.

(8)



SWP Report

Fractional Zener model

Fractional Zener model

The fractional Zener stress-strain constitutive relation can be
expressed by:

σ(t) + τ νσ
dνσ(t)

∂tν
= m

[
ε(t) + τ νε

dνε(t)

dtν

]
. (9)

Then, the complex modulus of this model is represented as

G∗(ω) = m

(
1 + τ νε (iω)ν

1 + τ νσ (iω)ν

)
, (10)

and its loss tangent is

tanδ(ω) =
(τ νε − τ νσ )ωνsin(νπ/2)

1 + τ νε τ
ν
σω

2ν + (τ νε + τ νσ )ωνcos(νπ/2)
. (11)
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Fractional Zener model

The relaxation function G(t) and creep function J(t) of the
fractional Zener model can be obtained by G(t) = Ge +G1Eν [−(t/τσ)ν ], G1 =

(
τνε
τνσ
− 1
)
m,

J(t) = Jg + J1 [1− Eν [−(t/τε)
ν ]] , J1 =

(
1− τνσ

τνε

)
1
m
.

(12)
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Generalized Maxwell model

A group of Maxwell elements in parallel represents a discrete
spectrum of relaxation times, each time τσ,i being associated
with a spectral strength Gi. Since in a parallel arrangement the
stresses are additive, it can readily be shown

Gm,N(t) =
N∑
i=1

Gie
−t/τσ,i , (13)

where the subscript m denotes multiple Maxwell elements in
parallel.
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Generalized Kelvin-Voigt model

Similarly, a group of Kelvin-Voigt elements in series represents
a discrete spectrum of retardation times, each time τε,i being
associated with a spectral compliance magnitude Ji. Since in a
series arrangement the strains are additive, it turns out that for
the Kelvin-Voigt model,

Jkv,N(t) =
N∑
i=1

Ji
(
1− e−t/τε,i

)
, (14)

where the subscript kv denotes multiple Kelvin-Voigt elements
in series.
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Time spectra and frequency spectra

Relaxation and retardation spectral functions

In more general cases, the material functions with continuous
distributions turn out to be of the following form{

Gτ (t) = a
∫∞

0
Rσ(τ)e−t/τdτ,

Jτ (t) = b
∫∞

0
Rε(τ)

(
1− e−t/τ

)
dτ.

(15)

where Rσ(τ) and Rε(τ) are the relaxation and retardation spec-
tral functions of the viscoelastic body.
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Time spectra and frequency spectra

Frequency-spectral functions

To determine the time-spectral functions from the knowledge
of the relaxation and creep functions, Laplace transform theory
and Stieltjes transforms are used34. Introducing the frequency-
spectral functions {

Sσ(γ) = aRσ(1/γ)
γ2

,

Sε(γ) = bRε(1/γ)
γ2

,
(16)

where γ = 1/τ denotes a retardation or relaxation frequency.

3Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models.

4Nicholas W Tschoegl. The phenomenological theory of linear viscoelastic behavior: an introduction. Springer
Science & Business Media, 2012.
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Time spectra and frequency spectra

The Laplace transform

Differentiating equation 15 with respect to time and applying
Laplace transform yields sĴτ (s) =

∫∞
0

γSε(γ)
s+γ

dγ,

sĜτ (s) = Gτ (0
+)−

∫∞
0

γSσ(γ)
s+γ

dγ.
(17)
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Time spectra and frequency spectra

The Stieltjes transform

Then we introduce the Stieltjes transform function5

Ĥ(s) =

∫ ∞
0

γS(γ)

s+ γ
dγ, (18)

and its inversion may be carried out by Titchmarsh’s formula,

γS(γ) =
1

π
Im
[
Ĥ(γe−iπ)

]
. (19)

5Bernhard Gross. Mathematical structure of the theories of viscoelasticity. Vol. 1190. Hermann, 1953.
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Time spectra and frequency spectra

From material functions to time-spectral functions

In summary, once we know the Laplace transforms of mate-
rial functions, the corresponding frequency distributions can be
derived by inversion of Stieltjes transforms, and then using equa-
tion 16, we can obtain the time-spectral functions.
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Mechanical approximation for fractional Zener model

Time-spectral functions of fractional Zener model

We now consider the corresponding time-spectral functions of
the fractional Zener model Gτ (t) = G1Eν [−(t/τσ)ν ] = G1

∫∞
0
Rσ(τ)e−t/τdτ,

Jτ (t) = J1 [1− Eν [−(t/τε)
ν ]] = J1

∫∞
0
Rε(τ)

(
1− e−t/τ

)
dτ.

(20)
with J1 = Je − Jg and G1 = Gg −Ge.
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Mechanical approximation for fractional Zener model

Laplace transform and Stieltjes transform

According to the method of Laplace transform and Stieltjes
transform, we first apply Laplace transform to Ġτ (t)

sĜτ (s) = G1
sν

sν + (1/τσ)ν
. (21)

According to equations 17 and 18, we have

Ĥ(s) = G1
(1/τσ)ν

sν + (1/τσ)ν
, (22)

and the inversion of Stieltjes transformation via equation 19
yields

γSσ(γ) =
1

π

(γτσ)νsin(πν)

1 + (γτσ)2ν + 2(γτσ)νcos(πν)
. (23)
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Mechanical approximation for fractional Zener model

Relaxation spectrum

Substituting equation 23 to equation 16, then we obtain relax-
ation spectrum of fractional Zener model

Rσ(τ) =
1

πτ

sin(νπ)

(τ/τσ)ν + (τ/τσ)−ν + 2cos(νπ)
. (24)

Similarly, the retardation spectrum of fractional Zener model
has the same form as above.
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Mechanical approximation for fractional Zener model

Relaxation spectrum
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Figure 1. The relaxation spectrum Rσ(τ) of the fractional Zener model with different

ν, where τνσ = 0.5.
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Mechanical approximation for fractional Zener model

Rheological representation

According to Theorem 2 in6, we can also formulate a rheological
representation for fractional Zener model with multiple Maxwell
models in parallel. The Gτ (t) of fractional Zener model is

Gτ (t) = G1

∫ ∞
0

Rσ(τ)e−t/τdτ, (25)

And we assume that the Gm,N(t) of the generalized Maxwell
model is

Gm,N(t) = G1

N∑
i=1

fN(τσ,i)∆τσ,i. (26)

6Katerina D Papoulia et al. “Rheological representation of fractional order viscoelastic material models”. In:
Rheologica Acta 49.4 (2010), pp. 381–400.
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Mechanical approximation for fractional Zener model

Rheological representation

We assume that the parameters τσ,i are geometrically spaced
between λ and µ (0 < λ < µ) with τσ,i/τσ,i−1 = r = (µ/λ)1/N

to cover a wide band of interest,

τσ,i = λ(N−i)/Nµi/N , 0 ≤ i ≤ N. (27)
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Mechanical approximation for fractional Zener model

Lebesgue’s dominated convergence

Let (fn(x))∞n=1 be a sequence of Lebesgue integrable functions
that converge to a limit function f almost everywhere on I.
Suppose that there exists a Lebesgue integrable function g such
that |fn| ≤ g almost everywhere on I and for all n ∈ N. Then f
is Lebesgue integrable on I and lim

n→∞

∫
I
fn(x)dx =

∫
I
f(x)dx.
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Spectral fitting method

Mechanical approximation for fractional Zener model

Rheological representation

According to the Lebesgue’s dominated convergence, We en-
force {

f(τ) = Rσ(τ)e−t/τ

fN(τσ,i) = Rσ(τσ,i)e
−t/τσ,i .

(28)

The Gm,N(t) is therefore given by

Gm,N(t) = G1

N∑
i=1

fN(τσ,i)∆τσ,i

= G1(r − 1)
N∑
i=1

τσ,iRσ(τσ,i)e
−t/τσ,i .

(29)

where the forward approximation for numerical integral is used,
and ∆τσ,i = τσ,i+1 − τσ,i = (r − 1)τσ,i.
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Mechanical approximation for fractional Zener model

Rheological representation

If there exists a Lebesgue integrable function g(τ) so that |f(τ)| ≤
g(τ), then we have

lim
N→∞

Gm,N(t) = lim
N→∞

G1

N∑
i=1

fN(τσ,i)∆τσ,i

= lim
N→∞

G1

∫ ∞
0

fN(τ)dτ

= G1

∫ ∞
0

f(τ)dτ

= G1

∫ ∞
0

Rσ(τ)e−t/τdτ = Gτ (t).

(30)
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Mechanical approximation for fractional Zener model

Rheological representation

To this end we need to find a Lebesgue integrable function g(τ)
so that

|f(τ)| = Rσ(τ)e−t/τ

=
1

πτ

sin(νπ)

(τ/τσ)ν + (τ/τσ)−ν + 2cos(νπ)
e−t/τ

≤ 1

πτ
Me−t/τ = g(τ),

(31)

where M is the upper bound of the red part.
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Mechanical approximation for fractional Zener model

Rheological representation
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Figure 2. The function f(τ) with different ν, where t = 0.01.
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Mechanical approximation for fractional Zener model

Rheological representation

The complex modulus of the generalized Maxwell model is there-
fore obtained

G∗m,N(ω) = G1(r − 1)
N∑
i=1

τσ,iRσ(τσ,i)
iωτσ,i

1 + iωτσ,i
, (32)

and
lim
N→∞

G∗m,N(ω) = G∗(ω), (33)

where G∗(ω) is the complex modulus of the fractional Zener
model shown in equation 10.
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Spectral fitting method

Mechanical approximation for fractional Zener model

The schematic diagrams of the mechanical models

Figure 3. The schematic diagrams of the mechanical models: (a) Zener model, (b)

fractional Zener model, (c) generalized Maxwell model, and (d) generalized

Kelvin-Voigt model.
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Mechanical approximation for fractional Zener model

Geometrically spaced τσ,i
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Figure 4. The rheological representations of the fractional Zener model with multiple

Maxwell models in parallel: (a) storage modulus, (b) loss modulus, (c) loss tangent.

The elements number N = 1, 10, 100, 1000 are respectively shown with different

color lines.
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Mechanical approximation for fractional Zener model

Uniformly spaced τσ,i
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Figure 5. The rheological representations of the fractional Zener model with multiple

Maxwell models in parallel: (a) storage modulus, (b) loss modulus, (c) loss tangent.

The elements number N = 1, 10, 100, 1000 are respectively shown with different

color lines.
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Mechanical approximation for fractional Zener model

Loss tangent versus ν
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Figure 6. The loss tangent of the fractional Zener model with different ν.
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Summary

I We have developed an explicit mechanical representation
with multiple Maxwell elements in parallel for the fractional
Zener model. Both mathematical analysis and the numeri-
cal comparison demonstrate the equivalence between mul-
tiple and fractional generalization of the Zener model.

I Due to the excellent flexibility of the fractional models in
fitting the experimental measurements and the increasing
popularity of the fractional calculus in viscoelasticity, it is
crucial to have a better understanding about the connec-
tion between multiple and fractional generalizations from
both mathematical and physical viewpoint.
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Thank you!
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