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ABSTRACT

Recently, a decoupled fractional Laplacian viscoacoustic
wave equation has been developed based on the constant-Q
model to describe wave propagation in heterogeneous media.
We have developed two efficient modeling schemes to solve
the decoupled fractional Laplacian viscoacoustic wave equa-
tion. Both schemes can cope with spatial variable-order frac-
tional Laplacians conveniently, and thus are applicable for
modeling viscoacoustic wave propagation in heterogeneous
media. Both schemes are based on fast Fourier transform,
and have a spectral accuracy in space. The first scheme solves
a modified wave equation with constant-order fractional Lap-
lacians instead of spatial variable-order fractional Laplacians.
Due to separate discretization of space and time, the first

scheme has only first-order accuracy in time. Differently, the
second scheme is based on an analytical wave propagator, and
has a higher accuracy in time. To increase computational effi-
ciency of the second modeling scheme, we have adopted the
low-rank decomposition in heterogeneous media. We also
evaluated the feasibility of applying an empirical approxima-
tion to approximate the fractional Laplacian that controls am-
plitude loss during wave propagation. When the empirical
approximation is applied, our two modeling schemes become
more efficient. With the help of numerical examples, we have
verified the accuracy of our two modeling schemes with and
without applying the empirical approximation, for a wide
range of seismic quality factor (Q). We also compared compu-
tational efficiency of our two modeling schemes using numeri-
cal tests.

INTRODUCTION

The anelastic behavior of the earth can introduce strong attenu-
ation and dispersion to propagating waves; thus, it is necessary to
incorporate the viscous effects into seismic forward modeling and
seismic data processing. In recent years, incorporation of attenua-
tion into seismic imaging (Zhang et al., 2010; Dutta and Schuster,
2014; Sun et al., 2015) and inversion (Kurzmann et al., 2013; Bai
et al., 2014; Chai et al., 2014, 2016) has become a common practice
for exploration geophysicists. The constant-Q model (CQM; Kjar-
tansson, 1979) provides an efficient parameterization of seismic at-
tenuation in rocks, which motivates the development of constant-Q
(CQ) or nearly constant-Q (NCQ) wave equations. Modeling CQM
is easy in the frequency domain, and it can be realized by introduc-
ing a complex velocity (Aki and Richards, 1980). However, in the
time domain, the relation between stress and strain is expressed by a
temporal convolution operator, which requires a huge computa-

tional cost for numerical calculation. The attenuation model consist-
ing of a series of standard linear solids (SLS) in parallel can closely
approximate CQM over a specified frequency range, and this ap-
proach has been adopted by many researchers to develop time-
domain viscoacoustic and viscoelastic wave equations (Day
and Minster, 1984; Emmerich and Korn, 1987; Carcione et al.,
1988a, 1988b; Blanch et al., 1995). Currently, these SLS-based
NCQ wave equations have been used as forward engines inQ-com-
pensated reverse time migration (RTM) and viscoacoustic full-
waveform inversion (FWI) (Deng and McMechan, 2007; Bai et al.,
2014). The SLS wave equation gains its popularity due to its flex-
ibility in applying efficient finite-difference (FD) schemes for
numerical calculation. However, to approximate the CQM with a
desirable accuracy, one has to optimize the involved stress and
strain relaxation times in advance (Blanch et al., 1995; Blanc et al.,
2016). In addition, to model CQ attenuation and dispersion of seis-
mic wave at long offsets, three SLS elements in parallel are usually

Manuscript received by the Editor 26 November 2015; revised manuscript received 17 May 2016; published online 3 August 2016.
1China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Lab of Geophysical Exploration, Beijing, China.

E-mail: huizhou@cup.edu.cn; huichanming@126.com; jyliqingqing@163.com; 13261295865@163.com.
© 2016 Society of Exploration Geophysicists. All rights reserved.

T233

GEOPHYSICS, VOL. 81, NO. 5 (SEPTEMBER-OCTOBER 2016); P. T233–T249, 15 FIGS., 5 TABLES.
10.1190/GEO2015-0660.1

D
ow

nl
oa

de
d 

04
/0

3/
20

 to
 1

62
.2

45
.2

39
.6

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2015-0660.1&domain=pdf&date_stamp=2016-08-03


required (Robertsson et al., 1994; Zhu et al., 2013), which increases
the number of wave equations to be solved and the number of char-
acterization parameters.
To develop more accurate NCQ wave equations, Carcione et al.

(2002) introduce a temporal fractional derivative to describe Kjar-
tansson’s (1979) CQ stress-strain relation, and develop a simple CQ
wave equation that only has two characterization parameters of
velocity and seismic quality factor (Q). Mathematically, the discre-
tization of temporal fractional derivative requires storing the whole
time history of wavefield, which is unacceptable for practical
numerical calculation. Later, Carcione (2010) transfers the frac-
tional derivative from time to space by using the dispersion relation,
and develops a fractional Laplacian wave equation that can be com-
puted by fast Fourier transform (FFT) and inverse FFT (IFFT). Sub-
sequently, Zhu and Harris (2014) develop a decoupled fractional
Laplacian NCQ wave equation that includes two fractional Lapla-
cians. The two fractional Laplacians have been proved to dominate
dispersion and attenuation, respectively. The main contribution of
Zhu and Harris’s (2014) NCQ is splitting the fractional Laplacian
that simultaneously controls dispersion and attenuation into two
parts, one dominating dispersion and the other dominating attenu-
ation. The decoupled effects are helpful for developing stable
Q-compensated RTM (Zhu et al., 2014; Li et al., 2016). Meanwhile,
Zhang et al. (2010) also develop a similar fractional Laplacian NCQ
for Q-compensated RTM.
In the fractional Laplacian wave equation, the fractional orders

are related to Q, and thus are spatially varying. Zhu and Harris
(2014) simply adopt the average value of the spatially varying or-
ders for numerical simulation. The average scheme is only reason-
able for smoothly heterogeneous Q models, but is unsuitable for
relatively sharp Q contrasts. The existing literatures have proposed
three solutions to cope with the spatial variable-order fractional
Laplacians. Li et al. (2014) use a weighted sum of two fixed-order
fractional Laplacians to match the variable-order fractional Lapla-
cian in the wavenumber domain, and estimate the weights using a
least-squares (LS) approach. After the LS conduction, each spatial
variable-order fractional Laplacian in the decoupled NCQ trans-
forms into two fixed-order fractional Laplacians. That means that
after the LS conduction, one needs to approximate four fractional
Laplacians. From another point of view, the spatial variable-order
fractional Laplacian represents a wavenumber-space mixed-domain
matrix. Chen et al. (2014) adopt the low-rank decomposition
(Fomel et al., 2013) to approximate each spatial variable-order frac-
tional Laplacian in the decoupled NCQ. The LS and the low-rank
schemes discretize time and space separately, and they have low-
order accuracies in time. Almost at the same time, Sun et al.
(2014, 2015) develop an efficient one-step low-rank modeling
scheme to numerically solve the same decoupled fractional Lapla-
cian NCQ. The spatially varying fractional orders of Laplacians are
automatically handled in the low-rank decomposition. The one-step
low-rank algorithm is based on an analytical time marching scheme,
and has superior temporal accuracy and stability to the low-rank
approximation scheme just for space as developed by Chen
et al. (2014).
In this paper, we develop two efficient FFT-based modeling

schemes for Zhu and Harris’s (2014) decoupled NCQ. Both of
our two schemes can efficiently cope with the spatial variable-order
fractional Laplacians. Our first scheme adopts the weighted sum of
two constant-order fractional Laplacians to approximate the spatial

variable-order fractional Laplacian. However, different from the LS
scheme developed by Li et al. (2014), the weights in our scheme are
explicitly expressed instead of being implicitly determined by the
LS approach. Our scheme should be more appealing for FWI, where
explicit characterization parameters are preferred. Our second mod-
eling scheme is based on an analytical wave propagator expressed in
the wavenumber domain. When applied to simulate wave propaga-
tion in homogeneous media, the second modeling scheme is free
of numerical dispersion and instability. When velocity and Q vary
spatially, the wave propagator is viewed as a wavenumber-space
mixed-domain matrix. We adopt the low-rank decomposition (Fo-
mel et al., 2013) to approximate the mixed-domain propagator, and
to further increase computational efficiency. Our low-rank model-
ing scheme is based on a three-step temporal extrapolation formula,
and it is different from the one-step scheme developed by Sun et al.
(2015). Effectiveness of our two modeling schemes will be demon-
strated by using numerical examples. The accuracy and efficiency
of our two modeling schemes will be compared as well.

METHOD

The decoupled fractional Laplacian NCQ wave equation (Zhu
and Harris, 2014) is expressed by

1

c2
∂2p
∂t2

¼ ηð−∇2Þγþ1pþ τ
∂
∂t
ð−∇2Þγþ1

2p; (1)

where

η ¼ −c2γo ω−2γ
o cosðπγÞ; τ ¼ −c2γ−1o ω−2γ

o sinðπγÞ;

c ¼ co cos

�
πγ

2

�
; γ ¼ 1

π
arctan

�
1

Q

�
; (2)

where p represents the pressure, ∇2 represents the Laplacian, and
co denotes the wave velocity defined at a reference angular fre-
quency ωo. Accordingly, we define the reference frequency by
fo ¼ ωo∕ð2πÞ. All the parameters of η; τ; γ; co, and Q in equation 2
are spatially dependent, denoted by x, and vary spatially. Zhu and
Harris (2014) replace the spatially varying order γðxÞ with the aver-
age value

γo ¼
1

N

XN
i¼1

γðxiÞ; (3)

where xi denotes the ith spatial grid node and N represents the total
number of spatial grid nodes. We observe that ηðxÞ and ð−∇2ÞγðxÞþ1

affect the seismic wave phase, whereas τðxÞ and ð−∇2ÞγðxÞþ1∕2 af-
fect the amplitude loss. The parameters ηðxÞ and τðxÞ introduce a
global effect to all frequency (or wavenumber) components. How-
ever, the fractional Laplacians produce different effects to different
frequency components. The fractional Laplacians with the averaged
γo in equation 3 cannot correctly describe dispersion and attenua-
tion of different frequency components in heterogeneous media.
Here, we present two effective schemes to cope with the spatial var-
iable-order fractional Laplacians.
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Temporal low-order modeling scheme

Assuming wave propagation in a homogeneous medium, we
adopt the generalized Fourier pseudospectral method (Carcione,
2010) to define the wavenumber response of the fractional Lapla-
cians, e.g.

ð−∇2Þγþ1p ¼ F−1fjkj2γþ2FðpÞg; (4)

where F and F−1 denote the forward and inverse Fourier trans-
forms, respectively, and jkj represents the norm of the wavenumber
vector k. For brevity, we denote the norm as k ¼ jkj. Using the gen-
eralized Fourier pseudospectral method, we transform equation 1
into the wavenumber domain

1

c2 cosðπγÞ
∂2 ~p
∂t2

¼ −c2γo ω−2γ
o k2γþ2 ~p −

1

Q
c2γ−1o ω−2γ

o k2γþ1
∂ ~p
∂t

;

(5)

where ~p represents the wavefield in the wavenumber domain. An
equivalent variation is applied to the first term on the right side of
equation 5

c2γo ω−2γ
o k2γþ2 ¼ λc2γo ω

−2γ
d k2γþ2 ¼ λk2

�
k
kd

�
2γ

; (6)

where λ ¼ ðωd∕ωoÞ2γ , ωd ¼ 2πfd denotes the dominant angular
frequency of the source, fd denotes the dominant frequency, and
kd ¼ ωd∕co represents the dominant wavenumber. If the reference
velocity co is just defined at the dominant frequency fd, one has λ ¼
1 and fo ¼ fd.
With the condition of 2γj lnðk∕kdÞj ≪ 1 satisfied, ðk∕kdÞ2γ in

equation 6 can be approximated by truncated Taylor-expansion
(TE)

�
k
kd

�
2γ

≈ 1þ 2γ ln
k
kd

: (7)

In general, for a low-loss medium (Q ≫ 1), γ has a small value
close to zero. One can prove γ ≈ 1∕ðπQÞ, so γ decreases as Q in-
creases. On the other hand, for propagating waves excited by a
band-limited source, most of the wave energy is distributed in a
narrow wavenumber range around kd. That means the condition
k∕kd ≈ 1 is approximately satisfied for most wave components.
The two conditions of γ ≈ 0 and k∕kd ≈ 1 ensure the approximation
accuracy in equation 7.
Then, we apply the TE approximation in equation 7 again

1þ 2γ ln
k
kd

¼ 1þ 2γ

ε
ln

�
k
kd

�
ε

¼ 1þ 2γ

ε
ln

�
1þ

�
k
kd

�
ε

− 1

�
;

≈ 1þ 2γ

ε

��
k
kd

�
ε

− 1

�

¼
�
1 −

2γ

ε

�
þ 2γ

ε

1

kεd
kε; (8)

where the parameter ε is introduced to guarantee ðk∕kdÞε − 1 suf-
ficiently close to zero, or ðk∕kdÞε close to one, which is the require-
ment of the truncated TE approximation applied in equation 8.
Substitution of equation 8 into equation 7 and further into equation 6
leads to

c2γo ω−2γ
o k2γþ2 ≈ λ

��
1 −

2γ

ε

�
k2 þ 2γ

ε

1

kεd
k2þε

�
; (9)

or equivalently (k ≠ 0)

c2γo ω−2γ
o k2γ ≈ λ

��
1 −

2γ

ε

�
þ 2γ

ε

1

kεd
kε
�
: (10)

To ensure the accuracy at high-wavenumber part, i.e., the part
with k > kd, one should choose ε < 1. To observe the effect of ε
on the approximation accuracy in equation 10, we conduct a
numerical test by using a homogeneous medium with co ¼
4000 m∕s. The model is discretized into 400 × 400 nodes with a
grid spacing of 20 m. For simplicity, we assume λ ¼ 1, which
means ωo ¼ ωd in equation 10. A series of Q and fo are used
to test the approximation accuracy in equation 10. We have ob-
served that for each pair of Q and fo, an optimal ε exists and min-
imizes the total relative errors expressed by

ET ¼
X
k

jGeðkÞ − GaðkÞj
jGeðkÞj

; (11)

where GeðkÞ represents the exact operator on the left side of equa-
tion 10 and GaðkÞ denotes the approximate operator on the right
side of equation 10.
For each pair ofQ and fo, we gradually increase 1∕ε from one to

a large number with the increment of one. We observe that the value
of ET decreases first and then increases with the increase of 1∕ε. In
addition, we find the optimal 1∕ε corresponding to the minimum of
ET . In Table 1, we list the optimal 1∕ε for a range of Q from 5 to
100, and a range of fo from 5 to 50 Hz. One can find that the op-
timal 1∕ε is proportional to Q, and independent of fo. To demon-
strate the magnitude of the approximation errors with the optimal
1∕ε, we list the maximum relative error for each pair of Q and fo in
Table 2. The maximum relative error is defined by

Table 1. Optimal 1∕ε for different Q and frequencies.

Q Frequency fo (Hz)

5 10 15 20 25 30 35 40 50

5 8 8 8 8 8 8 8 8 8

10 16 16 16 16 16 16 16 16 16

20 31 31 31 31 31 31 31 31 31

50 79 79 79 79 79 79 79 79 79

100 157 157 157 157 157 157 157 157 157

Efficient viscoacoustic modeling T235
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EM ¼ max

�jGeðkÞ − GaðkÞj
jGeðkÞj

�
: (12)

Table 2 indicates that the relative error of the approximation in
equation 10 has a small magnitude. The largest relative error in Ta-
ble 2 is 0.387%, and appears when Q ¼ 5 and fo ¼ 50 Hz. The
value of EM decreases as Q grows, however, slightly goes up as
the frequency increases. Table 2 verifies that the approximation
in equation 10 has a high accuracy for a wide range of Q and
fo. When Q becomes larger, EM and ET decrease further. The wide
range of dominant frequencies from 5 to 50 Hz satisfies the require-
ments of most seismic applications.
However, our purpose is to adopt a uniform ε for all distinct Q

values in heterogeneous media, instead of applying different ε for
distinct Q. That requires a strong robustness of our approximation
in equation 10. Figure 1 displays the relative errors of the approxi-
mation for Q ¼ 5, 10, 20, 50, and 100 with the same ε ¼ 1∕16. For
each Q, the errors for fo ¼ 5, 30, and 50 Hz are observed, respec-
tively. Figure 1a shows a large relative error for Q ¼ 5. However,
when Q increases to 10, the error decreases to a low level as shown
in Figure 1b because ε ¼ 1∕16 is optimal for Q ¼ 10 as listed in
Table 1. Figure 1c displays the relative errors for Q ¼ 20, which
reveals a visible error increase compared with Figure 1b. However,
the maximum relative error is not beyond 1.0%. When Q further
increases to 50 and 100, the relative errors become smaller, as dis-
played in Figure 1d and 1e.
We should point out that λ ¼ 1 is not an essential condition for

our approximation in equation 10. One can define co at an arbitrary
reference frequency fo. We assume λ ¼ 1 only for simplicity, and
fo in Tables 1 and 2 and Figure 1 actually represents the dominant
frequency fd of the source. If fo ≠ fd, the results in Tables 1 and 2
and in Figure 1 are still the same. Figure 1 indicates that the
approximation with ε ¼ 1∕16 in equation 10 introduces a small er-
ror for Q ≥ 10. We will further confirm the approximation accuracy
with ε ¼ 1∕16 in the following sections.
The approximation in equation 10 can also be applied to the sec-

ond term on the right side of equation 5

1

Q
c2γ−1o ω−2γ

o k2γþ1 ¼ λ

Qco
k

�
k
kd

�
2γ

≈
λ

Qco

��
1 −

2γ

ε

�
kþ 2γ

ε

1

kεd
k1þε

�
: (13)

Substitution of equations 9 and 13 into equation 5 results in

1

λc2 cosðπγÞ
∂2 ~p
∂t2

¼ −
���

1 −
2γ

ε

�
k2 þ 2γ

ε

1

kεd
k2þε� ~p

þ 1

Qco

∂
∂t

��
1 −

2γ

ε

�
kþ 2γ

ε

1

kεd
k1þε

�
~p

�
;

(14)

where γ ≈ 1∕ðπQÞ. By transforming equation 14 back to the space
domain, we have

1

λc2 cosðπγÞ
∂2p
∂t2

¼
�
1 −

2

επQ

�
∇2p

−
2

επQ

�
co
ωd

�
ε

ð−∇2Þ1þ0.5εp

−
1

Qco

∂
∂t

��
1 −

2

επQ

�
ð−∇2Þ0.5

þ 2

επQ

�
co
ωd

�
ε

ð−∇2Þ0.5þ0.5ε

�
p: (15)

Different from the original wave equation 1, the fractional orders
in equation 15 are independent of the spatially varyingQ. When ε is
determined as a constant value, equation 15 only contains spatially
constant-order fractional Laplacians, which facilitates numerical
implementation. The fractional Laplacians in equation 15 are cal-
culated by FFT to avoid spatial dispersion, as expressed in equa-
tion 4. The second-order temporal derivative in equation 15 is
approximated by the second-order centered-grid FD operator,
and the first-order temporal derivative is discretized by the back-
ward FD operator. The temporal FD discretization leads to the
global first-order accuracy in time.

Accuracy of equation 15 over long
distance propagation

To verify the accuracy of equation 15, we compare the numerical
solutions of equation 15 with those of the original wave equation 1.
The numerical solution of equation 1 is regarded as a reference. We
use a homogeneous medium with co ¼ 4000 m∕s. The medium is
discretized into 761 × 761 nodes with a grid spacing of 20 m. We
assume co is defined at the dominant frequency of the source, i.e.,
λ ¼ 1 in equation 15. A time step of Δt ¼ 1 ms is applied for 2.0 s
simulation. We adopt the Ricker wavelets with fd ¼ 5, 30, and
50 Hz, respectively, as the excitation sources at the center of the
medium. The solutions at a long distance of 5 km from the source

Table 2. The maximum relative error EM (%) with the optimal 1∕ε in Table 1.

Q Frequency fo (Hz)

5 10 15 20 25 30 35 40 50

5 1.44 × 10−1 1.52 × 10−1 1.99 × 10−1 2.38 × 10−1 2.70 × 10−1 2.98 × 10−1 3.24 × 10−1 3.46 × 10−1 3.87 × 10−1

10 3.85 × 10−2 3.54 × 10−2 4.61 × 10−2 5.46 × 10−2 6.17 × 10−2 6.79 × 10−2 7.33 × 10−2 7.82 × 10−2 8.69 × 10−2

20 7.30 × 10−3 6.30 × 10−3 8.20 × 10−3 9.60 × 10−3 1.08 × 10−2 1.19 × 10−2 1.28 × 10−2 1.37 × 10−2 1.51 × 10−2

50 5.20 × 10−4 4.30 × 10−4 5.50 × 10−4 6.50 × 10−4 7.30 × 10−4 8.10 × 10−4 8.70 × 10−4 9.20 × 10−4 1.00 × 10−3

100 1.14 × 10−5 9.30 × 10−6 1.20 × 10−5 1.40 × 10−5 1.60 × 10−5 1.70 × 10−5 1.90 × 10−5 2.00 × 10−5 1.20 × 10−5
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are compared. Figure 2 displays the solution comparison forQ ¼ 5,
10, 20, 50, and 100, respectively. Each subplot of Figure 2 contains
six panels. The upper three panels display the references and the
numerical solutions of equation 15 with ε ¼ 1∕8 for fd ¼ 5, 30,
and 50 Hz, respectively, whereas the lower three panels show
the references and the numerical solutions of equation 15 with ε ¼
1∕16 for the same three frequencies. We evaluate the match degree
between the numerical solutions and the references using the root-
mean-square (rms) error, which is marked in each panel.
Figure 2a indicates that for Q ¼ 5, the numerical solutions of

equation 15 with ε ¼ 1∕8 match the references much better than
those computed with ε ¼ 1∕16. However, for Q ≥ 10, especially
for Q ¼ 10 and 20, the numerical solutions with ε ¼ 1∕8 have
larger rms errors than those computed with ε ¼ 1∕16, as displayed
in Figure 2b–2e. The numerical solution with ε ¼ 1∕16 for Q ¼ 10

exhibits a very small rms error because ε ¼ 1∕16 is optimal forQ ¼
10 (see Table 1). For Q ¼ 20, the rms errors of the solutions with
ε ¼ 1∕16 become much larger than those for Q ¼ 10. However,
under such an rms error level (2.20 × 10−3 when fd ¼ 50 Hz),
the numerical solutions with ε ¼ 1∕16 still agree with the referen-
ces very well, as shown in Figure 2c. When Q further increases to
50 and 100 (Figure 2d and 2e), the rms errors decrease. We have

tested larger Q, and observed that the rms error decreases with the
increase ofQ. Note that some severe waveform distortions appear in
the numerical solutions in Figure 2d and 2e. They are the results of
temporal dispersion.
The numerical solution comparison in Figure 2 verifies that our

wave equation 15 with ε ¼ 1∕16 can simulate almost the same
wavefield as the original wave equation 1 for Q ≥ 10 at a long dis-
tance. When a relatively low-frequency source is applied, our wave
equation 15 with ε ¼ 1∕16 exhibits a high accuracy as well, even
for a rather small value of Q ¼ 5, as demonstrated in Figure 2a.
Therefore, we suggest using ε ¼ 1∕16 in equation 15. In the follow-
ing sections, we set ε ¼ 1∕16 in equation 15. Numerical simulation
of equation 15 is referred to as our first modeling scheme.

Low-rank modeling scheme

Our second modeling scheme starts from equation 5, which rep-
resents a second-order linear differential equation with respect to
time. It has an analytical solution (Arfken et al., 2013)

~pðtÞ ¼ eαtfA cosðβtÞ þ B sinðβtÞg; (16)

where A and B are two undetermined coefficients, and

Figure 1. Relative errors of the approximation in equation 10 for (a) Q ¼ 5, (b) 10, (c) 20, (d) 50, and (e) 100 with ε ¼ 1∕16. In each subplot,
the left, middle, and right panels display errors for fo ¼ 5, 30, and 50 Hz, respectively. The symbols kx and kz denote x- and z-axial wave-
numbers accordingly.
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α¼−
1

2
c2γþ1
o ω−2γ

o cos2
�
πγ

2

�
sinðπγÞk2γþ1;

β¼ 1

2
cγþ1
o ω−γ

o cos

�
πγ

2

��
4cosðπγÞ− cos2

�
πγ

2

�
sin2ðπγÞ

�1
2

kγþ1: (17)

Based on equation 16, one can obtain an analytical three-step
time marching scheme

~pðtþ ΔtÞ ¼ 2eαΔt cosðβΔtÞ ~pðtÞ − e2αΔt ~pðt − ΔtÞ: (18)
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The derivation for equations 16–18 is described in Appendix A.
Because equation 18 is based on the analytical solution, the time
marching scheme is free of instability and numerical dispersion.
Considering Δt is small, we apply the TE approximation

eαΔt ≈ 1þ αΔt; e2αΔt ≈ 1þ 2αΔt; (19)

in equation 18 and reformulate it as

~pðtþ ΔtÞ þ ~pðt − ΔtÞ − 2 ~pðtÞ
ðη̄ΔtÞ2

¼ Lα;β ~pðtÞ þ
τ̄

η̄2Δt
k2γþ1f ~pðtÞ − ~pðt − ΔtÞg; (20)

where

Lα;β ¼
2fcosðβΔtÞ − 1gð1þ αΔtÞ

ðη̄ΔtÞ2 ; (21)

and

η̄ ¼ 1

2
cγþ1
o ω−γ

o cos

�
πγ

2

��
4 cosðπγÞ − cos2

�
πγ

2

�
sin2ðπγÞ

�1
2

;

τ̄ ¼ −c2γþ1
o ω−2γ

o cos2
�
πγ

2

�
sinðπγÞ ≈ −

1

Q
c2γþ1
o ω−2γ

o : (22)

The parameters η̄ and τ̄ can be explicitly expressed by co andQ, and
the derivation is provided in Appendix B.
Equation 20 can be regarded as the discretization of the following

wave equation in the time and space domain:

∂2p
∂t2

¼ η̄2∇̂2pþ τ̄
∂
∂t
ð−∇2Þγþ1

2p; (23)

where ∇̂2 represents a pseudo-Laplacian with the wavenumber re-
sponse defined in equation 21. When Q approaches infinity, the
wavenumber response degrades to that of the acoustic pseudo-Lap-
lacian, as developed by Fomel et al. (2013). The modified wave-
number response can compensate spatial and temporal dispersion
due to discretization.
To further simplify equation 23, we apply the TE approximation

in equation 13 to the wavenumber response of τ̄ð−∇2Þγþ1∕2 in the
wavenumber domain

τ̄k2γþ1 ¼ −
1

Q
c2γþ1
o ω−2γ

o k2γþ1 ¼ −
λco
Q

k

�
k
kd

�
2γ

≈ −
λco
Q

��
1 −

2γ

ε

�
kþ 2γ

ε

1

kεd
k1þε

�
; (24)

where ε ¼ 1∕16. By transforming equation 24 back to the space
domain and inserting it into equation 23, we obtain

∂2p
∂t2

¼ η̄2∇̂2p −
λco
Q

∂
∂t

��
1 −

2

επQ

�
ð−∇2Þ0.5

þ 2

επQ

�
co
ωd

�
ε

ð−∇2Þ0.5þ0.5ε

�
p: (25)

The pseudo-Laplacian and fractional Laplacians are calculated
with the help of FFT, and the temporal derivatives are discretized
by the FD operators, as expressed in equation 20. The key to attain
stable temporal extrapolation is applying the modified wavenumber
response (equation 21) for the pseudo-Laplacian in equation 25.
Numerical simulation of equation 25 is referred to as our second
modeling scheme.

Accuracy of equation 25 over long distance
propagation

We adopt the TE approximations in equations 19 and 24 to derive
equation 25, and the approximations would introduce errors to the
analytical time marching scheme in equation 18. To investigate the
accuracy, we repeat the numerical solution comparison at a long
distance of 5 km. Figure 3 displays the numerical solutions of
the analytical time marching scheme in equation 18 (reference),
and the numerical solutions of equation 25 for Q ¼ 5 and 10, re-
spectively. For each Q, the Ricker wavelets with three dominant
frequencies of fd ¼ 5, 30, and 50 Hz are used as excitation sources
separately. Figure 3a indicates that the numerical solutions of equa-
tion 25 forQ ¼ 5 exhibit a slight phase-shift off the references. The
phase shift causes a relatively large rms error of 9.30 × 10−3 when
fd ¼ 50 Hz. However, when Q increases to 10, no visible phase
shifts appear in the numerical solutions of equation 25, and the
rms errors are smaller than 3.0 × 10−3, as displayed in Figure 3b.
We have tested the accuracy for larger Q, and found that the rms
errors decrease with the increase of Q.
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Figure 3. Comparison of numerical solutions between equations 18
(reference) and 25 for (a) Q ¼ 5, (b) 10, and (c) comparison be-
tween equations 18 (reference) and 15 (first scheme) for Q ¼ 5.
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To compare the accuracies of our first and second modeling
schemes for Q ¼ 5, we contrast the numerical solutions of equa-
tion 15 to the references in Figure 3c. By comparing Figure 3c with
Figure 3a, one can observe that our first modeling scheme introdu-
ces larger phase and amplitude misfits off the references, and nat-
urally causes larger rms errors than our second scheme. The
comparison indicates that our second modeling scheme has a higher
accuracy than our first scheme for extremely small Q.
Another issue that needs to be addressed in our second modeling

scheme is the numerical implementation of the pseudo-Laplacian in
equation 25. In heterogeneous media, co and Q vary spatially and
the operator in equation 21 represents a wavenumber-space mixed-
domain matrix

Lα;βðx; jkjÞ ¼
2fcosðβðx; jkjÞΔtÞ − 1gf1þ αðx; jkjÞΔtg

fη̄ðxÞΔtg2 :

(26)

When one applies the pseudo-Laplacian to p in the space domain,
one equivalently conducts the calculation in the wavenumber do-
main

pðt; xÞ ¼ F−1fLα;βðx; jkjÞ ~pðt; jkjÞg: (27)

Theoretically, for each distinct value of co or Q, one needs to per-
form one time of IFFT for the calculation in equation 27. This

method is referred to as the pointwise FFT scheme. The pointwise
scheme is an effective numerical approach to handle the mixed-
domain operator; however, its computational cost is unacceptable.
To increase the computational efficiency, we adopt the low-rank de-
composition (Fomel et al., 2013) to approximate the mixed-domain
matrix

Lα;βðx; jkjÞ ≈W1ðx; jkjmÞN×mGm×nW2ðxn; jkjÞn×N; (28)

where m and n represent ranks of the decomposition, and they in-
fluence the decomposition accuracy, and N denotes the total grid
number. For a detailed interpretation of the three matrices W1,
G, and W2 in equation 28, one can refer to Fomel et al. (2013).
After the decomposition, we reformulate the calculation in equa-
tion 27 as

pðt; xÞ ≈
Xm
i¼1

W1ðx; jkjiÞ
Xn
j¼1

gi;jF−1fW2ðxj; jkjÞ ~pðt; jkjÞg;

(29)

where gi;j represents the ith row and jth column element of G. By
using equation 29, we require n times of IFFT to calculate the
pseudo-Laplacian per time step. For heterogeneous media, n in-
creases with the spatial complexity of the velocity and Q models,
and usually ranges from 2 to 5. In total, to simulate equation 25, we
need two times of FFT and nþ 2 times of IFFT per time step.
To demonstrate the feasibility of the viscoacoustic low-rank de-

composition in equation 28, we test the decomposition accuracy
using a 2D model with the total grid number of N ¼ 128 × 128

(Figure 4) and the grid spacing of 10 × 10 m. The velocity linearly
increases from 1500 to 4500 m∕s along the depth. The Q model is
generated by using an empirical formula. The minimum Q is 34 at
the surface, and the maximumQ is 383 at the bottom. A time step of
1.5 ms is adopted to calculate the exact mixed-domain matrix
Lα;βðx; jkjÞ in equation 26. Figure 5a displays the exact matrix,
and Figure 5b and 5c displays the absolute errors of the low-rank
decomposition with m ¼ n ¼ 2 and m ¼ n ¼ 3, respectively. One
can observe that with a larger rank, the low-rank decomposition
achieves a higher accuracy. For this pair of co and Q models, m ¼
n ¼ 3 is enough for controlling the decomposition error at a low
level (smaller than 1 × 10−4), as displayed in Figure 5c. A larger
rank of m and n decreases decomposition error further, but leads
to more times of IFFT during wave propagation.

Figure 4. A 2D velocity model with a total grid number of
128 × 128.

Figure 5. Illustration of viscoacoustic low-rank decomposition accuracy, (a) exact mixed-domain matrix, and low-rank decomposition abso-
lute errors with the ranks of (b) m ¼ n ¼ 2 and (c) m ¼ n ¼ 3.
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Efficiency comparison between our two modeling
schemes

Our first modeling scheme simulates equation 15, and discretizes
time and space separately, which leads to the first-order accuracy in
time. The temporal low-order accuracy would introduce great tem-
poral dispersion when a relatively high-frequency source is applied
(see Figure 2d and 2e with fd ¼ 30, 50 Hz). To control numerical
dispersion caused by temporal discretization, one has to adopt a tiny
time step for temporal extrapolation, which increases the computa-
tional cost. Our second modeling scheme is derived from the ana-
lytical time marching scheme, and has a higher temporal accuracy.
To compare computational efficiency of our two modeling schemes,
we conduct numerical simulations using the same homogeneous
medium and grid size as those used to obtain Figures 2 and 3.
A Ricker wavelet with fd ¼ 30 Hz is applied as the source. We
generate a reference solution at a distance of 5 km from the source
by using the analytical time marching scheme in equation 18 with
the time step of Δt ¼ 1 ms. Then, we compute the numerical sol-
utions at the same distance by using our two schemes, respectively.
The rms errors of the numerical solutions of our two schemes are
calculated to evaluate their match degrees with the reference. We
use two relatively large values of Q ¼ 20 and 100 for the numerical
solution comparison.
Table 3 lists rms errors of the numerical solutions of our two

schemes for Q ¼ 20. The second scheme introduces a small rms
error of 6.10 × 10−4 with Δt ¼ 1 ms. In contrast, the first scheme
causes a much larger rms error of 4.06 × 10−2 with the same time
step. Even with the two times smaller time step of Δt ¼ 0.5 ms, the
first modeling still causes a larger error than our second modeling
scheme. When the time step is further reduced to Δt ¼ 0.25 ms,
the first scheme achieves a slightly better accuracy than the second
scheme with Δt ¼ 1 ms. Table 4 lists the comparison for Q ¼ 100.
Compared with Q ¼ 20, the second modeling scheme produces a

smaller rms error of 5.76 × 10−6. In contrast, the first modeling
scheme causes a much larger rms error of 1.36 × 10−1 with
Δt ¼ 1 ms. When the time step is halved to 0.5 ms, the rms error
decreases to a low level, but still much larger than that of the second
scheme. When the time step is further halved to 0.25 ms, the rms
error of the first scheme presents an increase. To verify the increase,
we have repeated the comparison using the acoustic-wave equation,
and observed a similar increase. Note that the rms errors of
the numerical solutions of the second modeling scheme with Δt ¼
1 ms are already very small, and we have no need to use a smaller
time step. Therefore, the rms errors of the second scheme with Δt ¼
0.5; 0:25 ms are not listed in Tables 3 and 4.
Tables 3 and 4 indicate that to attain a comparable accuracy, the

first scheme has to use a smaller time step than the second scheme.
For wave propagation in heterogeneous media, the low-rank de-
composition in the second scheme would also introduce errors.
The presented numerical examples by Fomel et al. (2013) and Song
et al. (2013) indicate that the ranks of m ¼ n ¼ 5 are enough for
ensuring a desirable simulation accuracy in moderately hetero-
geneous models, such as the BP model (Billette and Brandsberg-
Dahl, 2014) with the maximum velocity contrast ratio of approx-
imately 3.0, and the Marmousi model with the ratio of approxi-
mately 4.5. We perform a rather conservative comparison, in
which the first modeling scheme adopts a two times smaller time
step than our second modeling scheme. With the ranks of
m ¼ n ¼ 5, the second modeling scheme requires two times of
FFT and seven times of IFFT per time step (see equation 25). In

Table 3. The rms errors of numerical solutions of our two
modeling schemes for Q � 20 and f d � 30 Hz. The reference
is computed by the analytical time marching scheme in
equation 18 with Δt � 1 ms.

Δt (ms) First scheme Second scheme

1.0 4.06 × 10−2 6.10 × 10−4

0.5 1.30 × 10−3 —
0.25 1.51 × 10−4 —

Table 4. The rms errors of numerical solutions of our two
modeling schemes for Q � 100 and f d � 30 Hz. The
reference is computed by the analytical time marching
scheme in equation 18 with Δt � 1 ms.

Δt (ms) First scheme Second scheme

1.0 1.36 × 10−1 5.76 × 10−6

0.5 3.70 × 10−3 —
0.25 5.20 × 10−3 —

Figure 6. Snapshots at 1.0 s computed withΔt ¼ 1 ms by (a) point-
wise FFT scheme (reference), our first scheme, the average scheme,
and snapshot differences from the reference, (b) the pointwise FFT
scheme with Δt ¼ 0.25 ms, our second scheme with Δt ¼ 1.0 ms,
and their differences.
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contrast, the first modeling scheme requires two
times of FFTand four times of IFFT per time step
(see equation 15). Therefore, the second scheme
can achieve a theoretical speed-up factor of ap-
proximately 1.33 compared with the first model-
ing scheme. We point out that the low-rank
decomposition in equation 28 and the low-rank
calculation in equation 29 also require float-
ing-point operations (FPOs), besides those in-
volved in FFT and IFFT, which leads to a
slight efficiency decrease of the second scheme.
Fortunately, the low-rank decomposition is
precomputation from a wave-propagation per-
spective.

NUMERICAL EXAMPLES

A simple two-layer model

We first demonstrate the accuracies of our two
modeling schemes by simulating viscoacoustic
wave propagation in a simple two-layer model
with the size of 8 × 8 km. The model contains
a horizontal interface at the depth of z ¼
4.0 km. The velocity and Q of the first layer
are 2 km∕s and 20, and those of the second layer
are 4 km∕s and 100. We adopt the grid spacing
of 10 × 10 m to discretize the model, and a
Ricker wavelet with fd ¼ 30 Hz to excite the
wavefield at ðx; zÞ ¼ ð4.0; 3.5Þkm. The velocity
model co is defined at fd, which means λ ¼ 1 in
equations 15 and 25. We adopt Zhu and Harris
(2014) averaging scheme, our first and second
modeling schemes to simulate wave propagation,
respectively. To evaluate the accuracies of differ-
ent schemes, we adopt the pointwise FFT scheme

to simulate the original wave equation 1 to obtain a reference wave-
field. The pointwise FFT scheme calculates the fractional Lapla-
cians (see equation 4) for the upper and lower layers separately.
Therefore, the pointwise FFT scheme is an effective approach to
handle the spatial variable-order fractional Laplacians.
Figure 6a displays the snapshots at 1.0 s computed by the point-

wise FFT scheme (reference), our first modeling scheme, and Zhu
and Harris (2014) averaging scheme with the same time step of
Δt ¼ 1 ms. The snapshot differences from the reference are dis-
played as well. All the snapshots and the differences are shown
in the same amplitude range. One can observe that the snapshot
difference between our first scheme and the reference is almost zero,
which proves the accuracy of our first scheme. However, compared
with the reference snapshot, the snapshot computed by Zhu and
Harris (2014) averaging scheme exhibits a visible difference, as dis-
played by the last panel in Figure 6a. We also demonstrate the ac-
curacy of our second scheme by comparing its simulation result
with that of the pointwise FFT scheme. Because the pointwise
scheme only has the first-order temporal accuracy that is inconsis-
tent with our second scheme, we adopt a tiny time step of
Δt ¼ 0.25 ms for the pointwise scheme, and a four times larger
time step ofΔt ¼ 1.0 ms for our second scheme. Figure 6b displays
the snapshot at 1.0 s computed by the pointwise scheme and our
second scheme with the ranks of m ¼ n ¼ 2. The difference be-
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Figure 7. Seismograms comparison between (a) reference and those computed
by the average scheme using Δt ¼ 1.0 ms, (b) reference and our first scheme
using Δt ¼ 1.0 ms, (c) reference using Δt ¼ 0.25 ms and our second scheme using
Δt ¼ 1.0 ms, (d) reference using Δt ¼ 0.25 ms and our first scheme using Δt ¼
1.0 ms. In each subplot, the upper and lower panels show seismograms at ð4;2Þ and
ð4;6Þkm, respectively. Note that the dotted line in the upper panel in Figure 7a denotes
the acoustic trace with the amplitude multiplied by 0.1.

Figure 8. Marmousi model (a) co and (b) Q.
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tween them is minimal, as shown in the third panel in Figure 6b,
which validates the accuracy of our second scheme.
For a detailed comparison, we display the seismograms recorded

at ðx; zÞ ¼ ð4; 2Þ km and ðx; zÞ ¼ ð4; 6Þ km in Figure 7. The seis-
mograms at the two positions are separately shown in the upper and
lower panels in each subplot of Figure 7. The first position is located
above the interface and source, so the seismograms consist of a di-
rect-arrival and reflected waveform. The second position is located
below the interface, and the seismograms only contain transmitted
waveform. Figure 7a displays the seismograms computed by Zhu
and Harris (2014) averaging scheme and by the pointwise FFT
scheme with Δt ¼ 1 ms. A large difference between the two seis-
mograms can be observed in Figure 7a. Note that we also plot the
acoustic trace in the upper panel in Figure 7a (see the dotted line) to
demonstrate that attenuation physically delays the wave relative to
nonattenuation (acoustic) case. The amplitude of the acoustic trace
is multiplied by 0.1. One can observe from Figure 7b that the seis-
mogram simulated by our first scheme fits the reference very well.
The seismograms simulated by our second scheme with Δt ¼ 1 ms

also match the reference with Δt ¼ 0.25 ms very well, as displayed
in Figure 7c. However, one can observe from Figure 7d that the
seismogram computed by our first scheme with Δt ¼ 1 ms exhibit
a visible misfit off the reference with Δt ¼ 0.25 ms. The misfit is
caused by the temporal dispersion.
We observe that a maximum time step of Δt ¼ 1.1 ms can be

used for the first scheme for stability; however, a maximum time
step of approximately Δt ¼ 5.5 ms corresponding to the Nyquist
frequency can be applied to the second scheme. Therefore, to sim-
ulate wave propagation in such a simple two-layer model, the sec-
ond scheme is more efficient than the first scheme because the
second scheme enables a much larger time step.

Marmousi model

We further verify the accuracies of our two modeling schemes by
simulating wave propagation in the Marmousi model (Figure 8).
This model contains complex structures and has a maximum veloc-
ity contrast ratio of approximately 4.6. The model is discretized
into 680 × 334 nodes with the grid spacing of 10 m. We adopt a
Ricker wavelet excitation source with fd ¼ 20 Hz located at
ðx; zÞ ¼ ð3.4; 0Þ km. We assume that the velocity in Figure 8 is de-
fined at 20 Hz as well. Our two modeling
schemes are applied to simulate wave propaga-
tion in the model, respectively. We have observed
that a maximum time step of Δt ¼ 0.9 ms can be
applied to the first scheme to avoid numerical in-
stability. However, the second scheme with the
ranks larger than two enables a maximum time
step ofΔt ¼ 1.6 ms. To facilitate the comparison
between our two schemes, we use Δt ¼ 0.9 ms

for the first scheme and Δt ¼ 1.5 ms for the sec-
ond scheme. We run our CUDA C codes on a
single GPU of NVIDIA GTX 760 to extrapolate
wavefield to 4.5 s. Table 5 lists the elapsed CPU
time of our two schemes. The ranks of four are
applied in the second scheme. If one only con-
siders the cost due to FFT and IFFT, the second
scheme should achieve approximately 20% effi-
ciency gain compared with the first scheme.
However, the second scheme practically takes

a little longer time than the first scheme, as listed in Table 5. This
is caused by the extra FPOs involved in the low-rank decomposition
in equation 28 and the summation operations in equation 29.

Table 5. Elapsed time of our first and second modeling
schemes for simulating 4.5 s wave propagation. The ranks of
m � n � 4 are adopted in the second scheme.

Δt (ms)

Times of
FFT

and IFFT
per step

Number
of time
steps for

4.5 s simulation
Elapsed
time (s)

First scheme 0.9 6 5001 47.32

Second scheme 1.5 8 3001 48.16

First scheme 0.45 6 10,001 95.12

Figure 9. Observation of the low-rank decomposition accuracy at
(a) ðx; zÞ ¼ ð990; 990Þ m with co ¼ 1849 m∕s, Q ¼ 54 and
(b) ðx; zÞ ¼ ð990; 2830Þ m with co ¼ 4500 m∕s, Q ¼ 383.

Figure 10. Seismic recordings at the surface computed by the (a) first and second
scheme.
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Figure 11. Trace comparison at x ¼ 2 km in Figure 10, between
reference and that computed by (a) the first scheme, (b) the second
scheme, and (c) the Zhu and Harris (2014) averaging scheme.

Figure 12. A closer look of waveform during 0.95–1.05 s and 1.6
−1.7 s, simulated by (a) the first scheme with Δt ¼ 0.9 ms, (b) the
second scheme with Δt ¼ 1.5 ms, and (c) the first scheme with
Δt ¼ 0.45 ms.
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To demonstrate the low-rank decomposition accuracy for the
Marmousi model, we select two spatial positions to observe the
decomposition error. The first spatial position is located at
ðx; zÞ ¼ ð990; 990Þ m, where co ¼ 1849 m∕s and Q ¼ 54, and
the second position is located at ðx; zÞ ¼ ð990; 2830Þ m, where
co ¼ 4500 m∕s and Q ¼ 383. Figure 9 displays the exact operators
at these two positions calculated by equation 28 and the low-rank
decomposition errors. One can observe that compared with exact
operators, the low-rank decomposition errors with the ranks of
m ¼ n ¼ 4 have a small magnitude, which indicates that the ranks
of m ¼ n ¼ 4 can ensure a sufficient accuracy during wave
propagation.
Figure 10 displays seismic recordings at the surface computed by

the first and second modeling schemes. In general, the two record-
ings agree with each other very well. In Figure 11, we compares the
traces at x ¼ 2 km, computed by our two schemes, and Zhu and
Harris (2014) averaging scheme, respectively. The reference trace
is computed by numerically solving equation 1 with a tiny time step
of Δt ¼ 0.225 ms. The used numerical scheme to obtain the refer-
ence is described in Appendix C. In each subplot of Figure 11, the
upper panel shows the waveform during 0.5–1.5 s, and the lower
panel shows the waveform during 1.5–3.0 s. Figure 11a and 11b
displays good matches between the reference and the traces simu-
lated by our two schemes. However, the trace computed by the aver-
age scheme exhibits a visible phase-shift off the reference, as
displayed in Figure 11c.

For a clear comparison, we magnified the traces in Figure 11a and
11b, and redisplay them in Figure 12a and 12b, respectively. One
can find a visible phase advance of the trace computed by our first
scheme in Figure 12a. In contrast, the trace simulated by our second
scheme fits the reference well, as shown in Figure 12b. When a two
times smaller time step of Δt ¼ 0.45 ms is used in the first scheme,
the temporal dispersion decreases, and the simulated trace matches
the reference very well, as shown in Figure 12c. However, when the
time step is halved, the elapsed CPU time of the first scheme ap-
proximately doubles, as listed in the third row of Table 5. Therefore,
to attain a comparable accuracy in this numerical test, the second
scheme runs almost two times faster than the first scheme.

DISCUSSION

In this section, we discuss the feasibility of applying an empirical
approximation to our wave equations 15 and 25. Taking equation 24
for example, we conduct the following empirical approximation:

τ̄k2γþ1¼−
1

Q
c2γþ1
o ω−2γ

o k2γþ1¼−
λco
Q

k

�
k
kd

�
2γ

→−
λco
Q

k1.01:

(30)

According to Zhu and Harris (2014), the operator τ̄k2γþ1 dominates
amplitude attenuation. We have further observed that the attenua-
tion rate is mainly controlled by the coefficient of co∕Q. For a given
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Figure 13. Comparison of numerical solutions between equations 1 (reference) and 31 for (a) Q ¼ 5, (b) 10, (c) 15, (d) 20, and (e) 50.
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wavenumber component, the fractional order γ only has a weak ef-
fect on the operator kðk2γ∕k2γd Þ, which further makes it have no
dominant contribution to the attenuation rate. For that reason, we
empirically conduct the approximation in equation 30. One may
adopt other fractional orders of the wavenumber, e.g., 1.0, 1.02,
or other values close to 1.0 in equation 30. A tiny perturbation
of the fractional order would not introduce great differences to
the amplitude of simulated waves.
When the empirical approximation is applied to equation 13, our

wave equation 15 is simplified into

1

λc2 cosðπγÞ
∂2p
∂t2

¼
�
1 −

2

επQ

�
∇2p

−
2

επQ

�
co
ωd

�
ε

ð−∇2Þ1þ0.5εp

−
1

Qco

∂
∂t
ð−∇2Þ0.505p: (31)

Similarly, our wave equation 25 is simplified into

∂2p
∂t2

¼ η̄2∇̂2p −
λco
Q

∂
∂t
ð−∇2Þ0.505p: (32)

Compared with equations 15 and 25, numerical simulations of
equations 31 and 32 have higher computational efficiency because
they contain fewer fractional Laplacians.
If one conducts a relative error analysis for the approximation in

equation 30, one can find that it introduces large errors. However,
the approximation indeed shows a strong robustness in numerical
simulation, which ensures the accuracies of equations 31 and 32. To
demonstrate the simulation accuracy, we compare numerical solu-
tions of equation 31 with that of the original equation 1 at a distance
of 5 km from the source. The numerical solution of equation 1 is
regarded as a reference. The homogeneous medium with
co ¼ 4000 m∕s is used again. We conduct the numerical solution
comparison for Q ¼ 5, 10, 15, 20, 50 in Figure 13a–13e, respec-

tively. We adopt the Ricker wavelets with fd ¼ 5, 30, and
50 Hz as sources for each Q. Figure 13 indicates that the rms error
of the numerical solutions of equation 31 generally increases with
fd, but reduces with the increase of Q. Relatively large rms errors
appear when Q ¼ 5, 10 with fd ¼ 30, 50 Hz, as shown in Fig-
ure 13a and 13b. However, for Q ¼ 15, the rms errors become
small, and the simulated waveform by equation 31 matches the
reference well, especially for fd ¼ 5, 30 Hz, as displayed in Fig-
ure 13c. When Q further increases to 20 and 50, the rms error
of the numerical solution of equation 31 decreases further.
One can also compare the rms errors in Figure 13 with those in

Figure 2 (see the panels with ε ¼ 1∕16), and conclude that equa-
tion 15 has a higher accuracy than our equation 31 because the for-
mer applies a more reasonable TE approximation to approximate
the fractional Laplacian dominating amplitude loss. However, Fig-
ure 13 verifies that for Q ≥ 15 equation 31 also shows a good ac-
curacy over long-distance propagation. Similarly, equation 32 has a
good accuracy for Q ≥ 15 as well.
To further verify the accuracies of equations 31 and 32, we repeat

the numerical tests in the “Numerical examples” section by using
equations 31 and 32. Figure 14 displays a similar seismogram com-
parison to Figure 7b. The seismogram marked by the legend of
“Empirical approximation” in Figure 14 refers to the numerical sol-
ution of equation 31, and the reference is the same as that shown in
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Figure 15. Simulated trace by (a) equations 15 and 31 and (b) equa-
tions 25 and 32.
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Figure 14. Similar seismograms comparison to Figure 7b. The seis-
mograms marked by “Empirical approximation” are computed by
equation 31.
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Figure 7b. One can observe that the seismograms simulated by
equation 31 agree with the reference very well, although the rms
errors are larger than those displayed in Figure 7b.
We conduct a similar seismic trace comparison to that in Fig-

ure 11. Figure 15a shows the traces simulated by our first modeling
scheme using equations 15 and 31, respectively, and Figure 15b
displays the traces simulated by our second modeling scheme using
equations 25 and 32, respectively. One can observe that the simu-
lated traces in equations 15 and 31 match each other very well, and
the rms error is small. Similarly, the numerical solutions of equa-
tion 32 also fit those of equation 25 very well, as displayed in
Figure 15b.

CONCLUSIONS

Two efficient FFT-based modeling schemes have been developed
to simulate the decoupled fractional Laplacian viscoacoustic wave
equation. Both schemes can effectively handle the spatial variable-
order fractional Laplacians. The first modeling scheme transforms
the spatial variable-order fractional Laplacian into constant-order
fractional Laplacians to facilitate numerical implementation.
Numerical solution of the first modeling scheme agrees with that
of the existing factional viscoacoustic wave equation very well
for Q ≥ 10. For Q < 10, the first modeling scheme introduces rel-
atively large errors over long-distance propagation. The second
modeling scheme is based on an analytical wave propagator, and
thus it has a higher temporal accuracy. In heterogeneous media,
the low-rank decomposition is applied to improve the computa-
tional efficiency of the second modeling scheme. Numerical
solution of the second modeling scheme matches that of the existing
factional viscoacoustic wave equation very well, even for Q < 10.
The second modeling scheme is more efficient than the first mod-
eling scheme because of allowing a larger time step for temporal
extrapolation. To further increase computational efficiency of the
two modeling schemes, an empirical approximation is applied to
approximate the fractional Laplacian dominating attenuation.
Numerical examples verify that the empirical approximation does
not decrease the accuracies of our two modeling schemes signifi-
cantly for Q ≥ 15. The modeling schemes proposed in this paper
can function as forward engines in viscoacoustic RTM and FWI.
Further extending our work to variable density media and viscoelas-
tic wave equation is possible.
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APPENDIX A

ANALYTICAL SOLUTION FOR FRACTIONAL
LAPLACIAN WAVE EQUATION

Equation 1 can be expressed as equation 5 in the wavenumber
domain, and equation 5 can be further written as

d2 ~p
dt2

þ a
d ~p
dt

þ b ~p ¼ 0; (A-1)

where

a ¼ −c2τk2γþ1; b ¼ −c2ηk2γþ2; (A-2)

where η and τ are defined in equation 2. The analytical solution type
of equation A-1 depends on the sign of the variable defined by

Δ ¼ a2 − 4b: (A-3)

Substitution of equation A-2 into equation A-3 leads to

Δ¼c2k2γþ2ðc2τ2k2γþ4ηÞ;

¼c2c2γo ω−2γ
o k2γþ2

�
c2γo ω−2γ

o cos2
�
πγ

2

�
sin2ðπγÞk2γ−4cosðπγÞ

�
;

≈c2c2γo ω−2γ
o k2γþ2

�
c2γo ω−2γ

o cos2
�
πγ

2

�
sin2ðπγÞ

�
ω2γ

c2γo

�
−4cosðπγÞ

�
;

¼c2c2γo ω−2γ
o k2γþ2

�
cos2

�
πγ

2

�
sin2ðπγÞ

�
ω2γ

ω2γ
o

�
−4cosðπγÞ

�
:

(A-4)

Based on the CQM (Kjartansson, 1979), one has cp ¼ coðω∕ωoÞγ ,
where cp denotes the phase velocity. Therefore, equation A-4 can be
equivalently written as

Δ ¼ c2c2γo ω−2γ
o k2γþ2

×
�
cos2

�
πγ

2

�
sin2ðπγÞ

�
cp
co

�
2

− 4 cosðπγÞ
�
: (A-5)

By using tanðπγÞ ¼ 1∕Q, one can further express equation A-5 as

Δ ¼ c2c2γo ω
−2γ
o k2γþ2ð1þQ2Þ−3

2

×
�
1

2

cp
co

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

p
−QÞ − 4Qð1þQ2Þ

�
: (A-6)

Considering cp∕co ≈ 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

p
−Q ≈ 0, we have Δ ≤ 0 for

all wavenumber components. Thus, equation A-1 has an analytical
solution expressed as (Arfken et al., 2013)

~pðtÞ ¼ eαtfA cosðβtÞ þ B sinðβtÞg; (A-7)

where A and B are two undetermined coefficients, and

α ¼ −
a
2
; β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b − a2

p

2
: (A-8)

Substitution of equation 2 into equation A-2 and further into equa-
tion A-8 leads to equation 17.
Based on equation A-7, one has

~pðtþ ΔtÞ ¼ eαðtþΔtÞfA cosðβtþ βΔtÞ þ B sinðβtþ βΔtÞg;
(A-9)
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~pðt − ΔtÞ ¼ eαðt−ΔtÞfA cosðβt − βΔtÞ þ B sinðβt − βΔtÞg:
(A-10)

By expanding the trigonometric functions, e.g.,

cosðβtþ βΔtÞ ¼ cosðβtÞ cosðβΔtÞ − sinðβtÞ sinðβΔtÞ;
(A-11)

and using equations A-7, A-9, and A-10 together, one can readily
derive the three-step time marching formula in equation 18.

APPENDIX B

PARAMETERS EXPRESSED BY VELOCITY AND Q

To simplify the characterization parameters in equations 15 and
25, we express the following parameters by co and Q:

γ ¼ tan−1ðQ−1Þ∕π ≈ 1∕ðπQÞ; (B-1)

c2 cosðπγÞ ¼ c2o cos2
�
πγ

2

�
cosðπγÞ

¼ c2o
2

�
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2
p þ Q2

1þQ2

�
; (B-2)

η̄¼ 1

2
cγþ1
o ω−γ

o cos

�
πγ

2

��
4 cosðπγÞ− cos2

�
πγ

2

�
sin2ðπγÞ

�1
2

;

¼ 1

2
cγþ1
o ω−γ

o

×
�
2

�
1þ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2
p

��
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

p −
1

8
ð1þ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2
p

�
1

1þQ2

��1
2

;

(B-3)

τ̄ ¼ −c2γþ1
o ω−2γ

o cos2
�
πγ

2

�
sinðπγÞ

¼ −
1

2
c2γþ1
o ω−2γ

o

�
1þ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2
p

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2
p ;

≈ −
1

2
c2γþ1
o ω−2γ

o

�
1þ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2
p

�
1

Q

≈ −
1

Q
c2γþ1
o ω−2γ

o : (B-4)

APPENDIX C

NUMERICAL SCHEME TO CALCULATE
A REFERENCE WAVEFIELD IN

HETEROGENEOUS MEDIA

It is unpractical to implement the pointwise FFT scheme for the
Marmousi model (Figure 8) to obtain a reference seismic recording
to evaluate our two modeling schemes. Here, we propose another
effective numerical scheme for solving equation 1 directly, instead
of solving wave equations 15 and 25.

By transforming equation 1 into the wavenumber domain, and
applying FD operators to discretize the temporal derivatives, we
have

1

c2Δt2
f ~pðtþ ΔtÞ − 2 ~pðtÞ þ ~pðt − ΔtÞg

¼ ηk2γþ2 ~pðtÞ þ τk2γþ1
~pðtÞ − ~pðt − ΔtÞ

Δt
: (C-1)

When the Q model is heterogeneous, γ varies spatially and equa-
tion C-1 contains two mixed-domain matrices

L1 ¼ k2γðxÞþ2; L2 ¼ k2γðxÞþ1: (C-2)

We incorporate the low-rank decomposition (Fomel et al., 2013)
into the time marching scheme in equation C-1 to improve compu-
tational efficiency of wavefield simulation in heterogeneous media.
We conduct the low-rank calculation in the same way as expressed
in equation 29.
Because equation C-1 contains two mixed-domain matrices, we

need to perform two times of low-rank decomposition. In addition,
in equation C-1, the temporal derivatives and fractional Laplacians
are approximated separately, so equation C-1 only has the first-or-
der accuracy in time. To ensure a high accuracy, we adopt a tiny
time step of Δt ¼ 0.225 ms for avoiding temporal dispersion,
and adopt relatively large ranks of m ¼ n ¼ 6 in the low-rank de-
composition of the two mixed-domain matrices in equation C-2. By
applying this modeling scheme, we obtain the reference trace in
Figure 11.
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