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Motivation

Motivation

I Amplitude attenuation and phase distortion caused by the
anelasticity of subsurface media degrade the quality of mi-
grated images and the reliability of the subsequent inter-
pretation.

I A common issue existing in seismic Q compensation is the
numerical instability. It has been stated in the literature
that direct amplitude compensation will inevitably result in
exponentially boosted high-frequency noise.

I We provide a brief overview of several widely used stabi-
lization strategies for seismic Q compensation.
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Motivation

I We start from our previous work of deriving the k-space
Green’s function for the compensated constant-Q wave
equation.

I We then propose a generalized stabilization scheme for seis-
mic Q compensation by incorporating a window function
into the exponentially divergent time propagator.

I With an assumption that the exponent of the chosen win-
dow is a power function of the magnitude of wavenum-
ber, we formulate an explicit stabilization term for the Q-
compensated constant-Q wave equation in the time-space
domain.
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Explicit stabilization may have following advantages over the
implicit schemes:

1. More convenient workflow for seismic Q compensation in
time-space domain.

2. No FFT needed when FDM is available for calculating frac-
tional Laplacians.

3. Relatively greater tolerance for parameter selection.

4. Precise phase correction.

5. Physically clear meaning of regularization.
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k-spcae Green’s function

Constant Q wave equation

We consider the constant-Q viscoacoustic wave equation with
decoupled fractional Laplacians (DFLs), which is firstly pro-
posed by1 as follow:

1

c2
∂2p

∂t2
−η(−∇2)γ+1p−τ ∂

∂t
(−∇2)γ+1/2p = δ(xs)f(t), (1)

where the coefficients before two fractional Laplacians, sepa-
rately stands for dispersion and absorption, are given by η =
−c2γ0 ω

−2γ
0 cos(πγ) and τ = −c2γ−10 ω−2γ0 sin(πγ).

1Tieyuan Zhu and Jerry M. Harris. “Modeling acoustic wave propagation in heterogeneous attenuating media
using decoupled fractional Laplacians”. In: Geophysics 79.3 (2014), T105–T116.
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k-spcae Green’s function

Compensated constant Q wave equation

The compensated constant-Q wave equation can be achieved
by reversing the absorption coefficient in sign but leaving the
equivalent dispersion parameter unchanged23, which is given by

1

c2
∂2p

∂t2
−η(−∇2)γ+1p+τ

∂

∂t
(−∇2)γ+1/2p = δ(xr)g(x, T − t).

(2)

2Bradley E Treeby, Edward Z Zhang, and B T Cox. “Photoacoustic tomography in absorbing acoustic media
using time reversal”. In: Inverse Problems 26 (2010), pp. 115003–20.

3Tieyuan Zhu, Jerry M. Harris, and Biondo Biondi. “Q-compensated reverse-time migration”. In: Geophysics
79.3 (2014), S77–S87.
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k-space Green’s function

According to our previous work4, the k-space Green’s function
of the compensated equation 2 is

G(k, t) =
1

2π

∫ ∞
−∞

eiω(t−t0)e−ik(x−xs)

ω2

c2
+ η|k|2γ+2 − iωτ |k|2γ+1

dω. (3)

The integral kernel function in this equation has two singularities
which can be obtained by solving ω for the following equation:

ω2

c2
+ η|k|2γ+2 − iωτ |k|2γ+1 = 0. (4)

4YF Wang et al. “The K-Space Green’s Functions for Decoupled Constant-Q Wave Equation and its Adjoint
Equation”. In: 79th EAGE Conference and Exhibition 2017. 2017.
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k-space Green’s function

Equation 4 is also known as the dispersion relation of the com-
pensated constant-Q wave equation, and its solutions are given
by

ζ1,2(k) = ±ξ1(k)− iξ2(k), (5)

where ξ1(k) = 1
2

√
−τ 2c4|k|4γ+2 − 4ηc2|k|2γ+2 and ξ2(k) =

−1
2
τc2|k|2γ+1 > 0 are absolute real part and imaginary part of

the solution, respectively. The time propagator of the compen-
sated equation 2, is given by5

Γcomp(k, t) = G(k, t) =
sin(ξ1(k)t)eξ2(k)t

ξ1(k)
. (6)

5Yufeng Wang et al. “Adaptive stabilization for Q-compensated reverse time migration”. In: Geophysics 83.1
(2018), S15–S32.
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Generalized stabilization scheme

Window function

We incorporate a window function eφ(k)t into the exponentially
divergent time propagator. Thus, the stabilized time propogator
can be expressed as

Γsta(k, t) =
sin(ξ1(k)t)eξ2(k)teφ(k)t

ξ1(k)
, (7)

where the window function eφ(k)t aims at suppressing the high-
wavenumber component of the time propogator.
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Window function

Mathematically, the conventional low-pass filtering method and
our previously proposed adaptive stabilization approach can be
taken as a special case of the generalized stabilization frame-
work. More specifically, equation 7 represents low-pass filtered
time propogator if we assume that eφ(k)t is a Tukey window
function; equation 7 reduces to an adaptive stabilized time pro-
pogator if we assume that eφ(k)t satisfies

eφ(k)t =
1

1 + σ2e2ξ2(k)t
, (8)

where σ2 is the stabilization factor.
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Exponential window

However, neither the Tukey window function nor the adaptive
stabilization operator can track back to an expilict stabilization
term in time-space domain. Luckily, if we assume that the expo-
nent of the chosen window is a power function of the magnitude
of wavenumber, we can derive a Q-compensated equation with
an expilict stabilization term, which is desirable particularly for
Q-RTM. We consider

φ(k) = −σ2|k|α, (9)

where the order α is typically an integer, the negative coefficient
−σ2 aims to achieve a trade-off between fedility and stability.



SWP Report

Generalized stabilization scheme

Backtracking

Substituting equation 9 into equation 7, we have

Γsta(k, t) =
sin(ξ1(k)t)e(ξ2(k)−σ

2|k|α)t

ξ1(k)
. (10)

Then we can track back to equation 5, the solutions of the
stabilized dispersion relation are

ζ ′1,2(k) = ±ξ′1(k)− iξ′2(k), (11)

where ξ′2(k) = ξ2(k)− σ2|k|α = −1
2
τc2
(
|k|2γ+1 + 2σ2

τc2
|k|α

)
.
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Backtracking

We need to be aware that the real part ξ′1(k) and the imagi-
nary part ξ′2(k) are related to each other. Now that we modify
the ξ2 into ξ′2, ξ′1(k) is no longer the same as ξ1(k). From
equation 6, we find that ξ1(k) mainly controls the phase of the
time propogator, whereas ξ2 mainly determines the amplitude
of the time propogator. This observation inspires us to keep ξ1
unchanged.
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Backtracking

We introduce a function ψ(k) satisfying the following relation

ξ′1(k) =
1

2

√
−τ 2c4

[
|k|2γ+1+

2σ2

τc2
|k|α

]2
− 4ηc2 [|k|2γ+2+ψ(k)]

=
1

2

√
−τ 2c4|k|4γ+2 − 4ηc2|k|2γ+2 = ξ1(k).

(12)
Then we can solve ψ(k) in this equation, it gives

ψ(k) =
−τc2σ2|k|2γ+1+α − σ4|k|2α

ηc2
. (13)



SWP Report

Generalized stabilization scheme

Backtracking

So far we have known two solutions of the stabilized dispersion
relation, thus, we can construct this dispersion relation as follow:

ω2

c2
+ η

(
|k|2γ+2 − τσ2

η
|k|2γ+1+α − σ4

ηc2
|k|2α

)
−iωτ

(
|k|2γ+1 +

2σ2

τc2
|k|α

)
= 0.

(14)
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Stabilized wave equation with Q compensation

Transforming equation 14 back to time-space domain, we obtain
the stabilized wave equation with Q compensation

1

c2
∂2p

∂t2
− η(−∇2)γ+1p+ τ

∂

∂t
(−∇2)γ+1/2p

+τσ2(−∇2)(2γ+1+α)/2p+
σ4

c2
(−∇2)αp

+
2σ2

c2
∂

∂t
(−∇2)α/2p = 0.

(15)
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Stabilized wave equation with Q compensation

We sometimes omit the phase correction term due to the nu-
merical dispersion is relatively not severer than amplitude at-
tenuation.

1

c2
∂2p

∂t2
− η(−∇2)γ+1p+ τ

∂

∂t
(−∇2)γ+1/2p

((((((((((((((((((((

+τσ2(−∇2)(2γ+1+α)/2p+
σ4

c2
(−∇2)αp

+
2σ2

c2
∂

∂t
(−∇2)α/2p = 0.

(16)
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Tracking and Backtracking
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Figure 0. The flow of tracking and backtracking.
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Parameters selection

Stabilization order α

There are two criteria to determine stabilization order α,

I the filtering property of exponential window function;

I the computational cost of the explicit stabilization term (if
we omit the phase correction term).

Obviously, the first criterion owns priority over the second one.
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Stabilization order α
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Figure 1. (a) Different window functions for stabilization and (b) the stabilized

compensation curves with window functions.
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Stabilization factor σ2

Stabilization factor σ2 is an another important parameter af-
fecting the filtering performance of the window functions. Let
we have a closer look on equation 7, coefficient σ2 controls the
contribution of the compensation term |k|2γ+1 and the stabi-
lization term 2σ2

τc2
|k|α (where τ < 0). Thus, stabilization factor

σ2 should be carefully chosen to ensure a comparable magnitude
between these two terms.
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Stabilization factor σ2

We introduce a reference scaling factor Sref to facilitate esti-
mation of σ2.

Sref =
−1

2
τc2|kref |2γ+1

|kref |α
, (17)

where kref is typically close to the maximum wavenumber, i.e.,
kref = 2π/(2dx). Then stabilization factor σ2 can be roughly
determined within a range of (0.5Sref , 2Sref ).



SWP Report

Parameters selection

Stabilization factor σ2
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Figure 2. The explicit stabilization with different factors σ2.
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Q-RTM exmaples

Marmousi model

Figure 3. (a) Velocity and (b) Q of the Marmousi model.
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Q-RTM exmaples

Q-RTM images

Figure 4. Seismic imaging results of the Marmousi model using (a) acoustic RTM on

lossless data, (b) acoustic RTM on lossy data, (c) Q-RTM without stabilization, (d)

Q-RTM with α = 1, (e) Q-RTM with α = 2, and (f) Q-RTM with α = 8. We set

σ2 = Sref for (d), (e) and (f).
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Q-RTM exmaples

Q-RTM traces
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Figure 4. The traces selected at a distance of 4000 m from imaging results.
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Discussion

I The proposed explicit stabilization scheme has potential to
provide a more convenient workflow for seismic Q com-
pensation. It enables us to be free of the third-party li-
brary and Fourier transform needed for low-pass filtering
functions when finite difference algorithms are available for
calculating fractional Laplacians.

I Although we have derived a phase correction term in the
stabilized wave equation 15, but we simply omit this term
in this paper, we would like to explore the effect of this
term in our future work.
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Conclusions

I Under an assumption that the exponent of the chosen win-
dow is a power function of the magnitude of wavenumber,
we formulated an explicitly stabilized wave equation with
both phase correction term and stabilization term in the
time-space domain.

I We provided a robust method for parameters selection by
introducing a reference scaling factor. Q-RTM tests on
synthetic data further verified the feasibility and stability
of the proposed method.



SWP Report

Discussion and conclusions

References:

Zhu, Tieyuan and Jerry M. Harris. “Modeling acoustic wave
propagation in heterogeneous attenuating media using de-
coupled fractional Laplacians”. In: Geophysics 79.3 (2014),
T105–T116.

Treeby, Bradley E, Edward Z Zhang, and B T Cox. “Photoa-
coustic tomography in absorbing acoustic media using time
reversal”. In: Inverse Problems 26 (2010), pp. 115003–20.

Zhu, Tieyuan, Jerry M. Harris, and Biondo Biondi. “Q-compensated
reverse-time migration”. In: Geophysics 79.3 (2014), S77–
S87.

Wang, YF et al. “The K-Space Green’s Functions for Decoupled
Constant-Q Wave Equation and its Adjoint Equation”. In:
79th EAGE Conference and Exhibition 2017. 2017.



SWP Report

Discussion and conclusions

Wang, Yufeng et al. “Adaptive stabilization for Q-compensated
reverse time migration”. In: Geophysics 83.1 (2018), S15–
S32.



SWP Report

Discussion and conclusions

Thank you!
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